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Why Finite Elements?
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An investigator seeking the solution of the partial differential equations which govern the 
behavior of deformable bodies soon discovers that few exact analytical descriptions are available 
and that those that are available are very much limited in applicability. Solutions are generally 
obtainable only for regions having certain regular geometric shapes (circles, rectangles, spheres, 
etc.) and then only for restricted boundary conditions[l-3] The need for results for more complex 
structures leads to the use of approximate methods of solution.

A number of different approximate methods have been devised since the beginning of the 
twentieth century. One of the earliest [4] replaces the goal of obtaining a continuously varying 
solution distribution by that of obtaining values at a finite number of discrete grid or nodal 
points. The differential equations are replaced by finite difference equations, which, together 
with appropriate boundary conditions expressed in difference form, yield a set of simultaneous 
linear equations for the nodal values. An alternative approximate method, the Rayleigh-Ritz 
method [5] introduced almost at the same time, seeks to expand the solution of the differential 
equations in a linear series of known functions. The coefficients multiplying these functions are 
obtained by requiring the satisfaction of the equivalent variational formulation of the problem 
and are, again, the solution of a set of simultaneous linear equations. These methods have 
extended the range of problems that may be considered but have been found to be limited by the 
extreme difficulty involved in applying them to even more complex shapes. The need to analyze 
the complicated swept-wing and delta-wing structures of high speed aircraft was the impetus 
which led to the development of the finite element method.

It is common in the traditional analysis of complicated building structures to divide them 
into pieces whose behavior under general states of deformation or loading is more readily 
available. The pieces are then reattached subject to conditions of equilibrium or compatibility. 
The slope- deflection method [6] in statically indeterminate rigid-frame analysis is an example of 
such an approach. Attempts at rational analysis of wing-structures initially took the same 
physically motivated path with, however, the improvements of matrix formulations and the use 
of electronic digital computers. Methods based on Castigliano's theorems were devised for the 
calculation of flexibility matrices for obtaining deflections from forces and stiffness matrices for 
the determination of forces from displacements. The former matrices were used in "force" 
methods of analysis while the latter were used in "displacement" methods. 

An explosion in the development of the finite element methods occurred in the years 
subsequent to 1960 when it was realized that the method, whether based on forces or 
displacements, could be interpreted as an application of the Rayleigh-Ritz method. This was first 
suggested for two dimensional continua by R. Courant,[8] who proposed the division of a domain 
into triangular regions with the desired functions continuous over the entire domain replaced by 
piecewise continuous approximations within the triangles. The use of flexibility matrices was 
found to imply the implementation of the principle of minimum complementary energy while 
stiffness matrices imply the principle of minimum potential energy. The use of this approach 
permits the investigation of such topics as the continuity requirements for the piecewise 
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approximations and convergence rates obtained with increasing numbers of elements or with 
increasing complexity of functional representation. It also allows stiffness or flexibility matrices 
to be calculated from a conceptually simpler mathematical viewpoint, while indicating the 
possibility of using variational principles in which both forces and displacements are varied to 
produce "hybrid" elements. Despite the possible advantage of hybrid elements for some 
problems, solutions based upon the principle of minimum potential energy and displacement 
approximations have become dominant for the simple reason that the associated computer 
software is more universally applicable and requires the least interaction between machine and 
operator.

In recent years the finite element method has been applied to mechanics problems other 
than those of structural analysis, i.e., fluid flow and thermal analysis. It has been extended to 
permit the solution of nonlinear as well as linear problems, those of large deformation geometric 
nonlinearity and/or material property nonlinearity, for example. It is hard to think of any field in 
which finite elements are not extensively used to provide answers to problems which would have 
been unsolvable only a few years ago.
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Chapter 1. Fundamental Relations 
for Linearly Elastic Solids
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Problems in solid mechanics deal with states of stress, strain and displacement in deformable 
solids. The basic relationships which govern these states and which are the basis for finite 
element applications are summarized below. The discussion is limited to states of small 
displacements and rotations and rotations to linear elastic materials. A more complete exposition 
may be found in a number of texts. [1, 9]

1.1. Stresses

1.1.1.Stress Matrix

External loading on the surface of a deformable body is assumed to be transmitted into 
the interior by the pressure of one part of the body on an adjacent portion. If such a body is 
divided by a plane having a given orientation in space (Fig. l a) and a region about a point P on 
the cut surface is considered, the pressure forces on this region may be resolved into a resultant 

moment vector M and a resultant force vector P (Fig. 1 b). As the region considered is 
decreased in size about the point, these resultant vectors decrease in magnitude and their 
directions will vary. In the limit it is assumed that the ratio of the force vector and the area upon 

which it acts, the stress vector, approaches a limit t (Fig. lc), while the ratio of the moment vector 
and the area, the couple stress vector, vanishes, i.e.

lim
P 

A 
= t 

Equation 1-1a

lim
M 

A 
= 0 

Equation 1-1b
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FIGURE 1 THE STRESS VECTOR AT A POINT

The stress vector t at a point in the body is a function of the orientation of the plane on 
which it acts and is related to the components of the stress vectors on three perpendicular planes 
passing through the point. The set of nine components, called the stress matrix, defines the state 
of stress at a point. In Cartesian coordinates these nine components are

S =

Equation 1-2
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The first subscript denotes the direction of the outwardly directed normal to the plane on 
which the stress component acts while the second subscript denotes the direction of the s tress 
component. These are shown in Fig. 2 acting on faces for which the outwardly directed normal is 
in the positive direction of the coordinate axis. On the remaining faces for which the outwardly 
directed normal is in the opposite direction, the stress component directions are reversed. 
Conditions of moment equilibrium of forces about a point require symmetry of the stress matrix, 
i.e.

=

=

=

Equation 1-3

FIGURE 2 STRESS VECTOR COMPONENTS ON THREE 
PERPENDICULAR PLANES ABOUT POINT 0
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If the outwardly directed normal to the plane through point O (Fig. 3) is

n =

n
n
n

Equation 1-4

the stress vector on that plane is given by

t =

t
t

t
= S n =

n + n + n

n + n + n

n + n + n

Equation 1-5

FIGURE 3 STRESS VECTOR IN PLANE WITH NORMAL VECTOR N

1.1.2.Rotated Coordinate Systems

The stress matrix has been defined with respect to a given coordinate system x, y, z. If a 
second set of Cartesian coordinates x', y', z' having the same origin but different orientation is 
introduced, the two systems of coordinates are related by (Fig. 4)

x = Nx

Equation 1-6

with

x =
x
y
z

=
x
y

z

Equation 1-7
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FIGURE 4 COMPONENT OF A VECTOR IN ROTATED CARTESIAN 
COORDINATE SYSTEMS

and

N =

n n n
n n n
n n n

Equation 1-8

where ni'j is the cosine of the angle between the primed i'-axis and the unprimed j-axis. The 
relationship

N = N

Equation 1-9

holds for this matrix. The stress matrix with respect to the second set of Cartesian axes is 
expressed by

S = NSN

Equation 1-10
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It is sometimes more convenient to speak of the six independent stress components which 
comprise the stress matrix

=

Equation 1-11

The transformation relation under a rotation of the coordinate system given by Eq. (1.6 ) then 
becomes

= T

Equation 1-12

with

=

Equation 1-13

and

T =

n n n 2n n 2n n 2n n

n n n 2n n 2n n 2n n

n n n 2n n 2n n 2n n

n n n n n n n n + n n n n + n n n n + n n

n n n n n n n n + n n n n + n n n n + n n

n n n n n n n n + n n n n + n n n n + n n

Equation 1-14

If the coordinate axes rotate through an angle about a coordinate axis, say the z-axis, (Fig. 5) the matrix N 
becomes

N =
cos sin 0

sin cos 0
0 0 1

 

Equation 1-15
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FIGURE 5 COORDINATE SYSTEMS ROTATED ABOUT A COMMON
AXIS

and T is given by

T =

cos sin 0 2sin cos 0 0
sin cos 0 2sin cos 0 0

0 0 1 0 0 0
sin cos sin cos 0 cos ( sin ) 0 0

0 0 0 0 cos sin
0 0 0 0 sin cos

Equation 1-16
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1.1.3.Principal Stresses

For certain coordinate axis rotations the stress matrix becomes diagonal so that shear stresses 
vanish. The stress vectors on the three faces perpendicular to the coordinate axes are normal to 
the surface on which they act (Fig. 6).

FIGURE 6 PRINCIPAL STRESS COMPONENTS

The three diagonal stress components are called principal stresses and their corresponding 
directions are called the principal directions. They are given by the solution of the sets of 
homogeneous equations

[S I]n = 0 i = 1, 2, 3

Equation 1-17

where ni is the vector defining the direction of the principal stress Thus the three values of the 
principal stresses are the solution of the determinantal equation

det S I = 0

Equation 1-18
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or by the cubic equation

I + I I = 0

Equation 1-19

where the coefficients are stress invariants independent of the chosen coordinate system and are 
defied by

I = + + = + +

Equation 1-20 a

I = + + = + +

Equation 1-20 b

I = det|S| =

Equation 1-20 c

For an isotropic material, a measure of stress intensity required for the material to yield 
and become plastic is the von Mises stress given by

=
1

2
+ + ( ) + 6 + +

Equation 1-21 a

This stress is related to the octahedral shearing stress, the shear stress on a plane making equal 
angles with respect to the principal axes, by

= 3

Equation 21-1 b
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1.1.4.Equations of Equilibrium

The six stress components are not arbitrary but must satisfy the force equilibrium equations 
(Fig. 7)

FIGURE 7
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+ + + f = 0

Equation 1-22 a

+ + + f = 0

Equation 1-22 b

+ + + f = 0

Equation 1-22 c

Where fx, fx, fx are the components of the body force vector (force per unit volume) f.

1.2. Strains

1.2.1.Strain Matrix

The deformation state at a point in a deformed body is defined by the strain matrix

E =

1

2

1

2
1

2

1

2
1

2

1

2

Equation 1-23

in which the diagonal strain components are a measure of the relative change of length of lines 
originally in the directions of the coordinate axes while the off-diagonal components are 
symmetric and are a measure of the change of angle between two lines originally in the direction 
of the coordinate axes (Fig. 8). For small strains and rotations, the relationships between the 
strain components and the components of the displacement vector
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FIGURE 8 INTERPRETATION OF A SMALL STRAIN COMPONENTS
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u =

u
u
u

Equation 1-24

are

=    =    =

= =
u

+
u

= =
u

+
u

= =
u

+
u

Equation 1-25

1.2.2.Rotated Coordinate Axes

Under a change of Cartesian coordinate systems at the point, the strain matrix has a 
transformation similar to that of the stress matrix, i.e.

E = NEN

Equation 1-26

In terms of the independent strain component matrix

=

Equation 1-27
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the transformation becomes

= T

Equation 1-28

with

=

Equation 1-29

and

T =

n n n n n n n n n

n n n n n n n n n

n n n n n n n n n

2n n 2n n 2n n n n + n n n n + n n n n + n n

2n n 2n n 2n n n n + n n n n + n n n n + n n

2n n 2n n 2n n n n + n n n n + n n n n + n n

Equation 1-30

T is related to T by

T = (T )

If the rotation is about a coordinate axis, say the z axis,

T =

cos sin 0 2sin cos 0 0
sin cos 0 2sin cos 0 0

0 0 1 0 0 0
sin cos sin cos 0 cos ( sin ) 0 0

0 0 0 0 cos sin
0 0 0 0 sin cos

Equation 1-31
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1.2.3.Principal Strains

As in the case of stress, the strain matrix becomes diagonal for a particular set of axes, the 
principal strain directions, which are the solution of homogeneous equation

[E I]n = 0   i = 1, 2, 3

Equation 1-32

The three principal strains are given by the solution of the cubic equation

J + J J = 0

Equation 1-33

in which the invariants coefficients are defined as

J = + + = + +

Equation 1-34 a

J = + +
1

4
+ + = + +

Equation 1-34 b

J = det|E| =

Equation 1-34 c

1.3. Stress-Strain Relations

1.3.1.Anisotropic Material

The relationship between the components of stress and strain is the generalized Hooke’s 
law given by the linear equation

= C( A T)

Equation 1-35

in which C is the symmetric elastic-coefficient matrix

C =

C C C C C C

C C C C C

C C C C

C C C

C C

sym C

Equation 1-36
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A is the thermal expansion coefficient matrix

A =

Equation 1-37

and T is the difference between the actual temperature and the uniform temperature at which 
the body is stress free.  The relation may also be expressed by the inverted form

= F + A T

Equation 1-38

in which

F = C

Equation 1-39

Under a rigid body of rotation of the coordinate system the matrix C transforms as

C = T CT

Equation 1-40a

while F transforms as

F = T FT

Equation 1-40b



FUNDAMENTAL RELATIONS FOR LINEARLY ELASTIC SOLIDS

23

For an orthotropic material, one with three preferred material axes and with the material 
axes coinciding with the coordinate axes, the matrices F and A are defined by

F =

1

E

v

E

v

E
0 0 0

v

E

1

E

v

E
0 0 0

v

E

v

E

1

E
0 0 0

0 0 0
1

G
0 0

0 0 0 0
1

G
0

0 0 0 0 0
1

G

Equation 1-41

in which

v

E
=

v

E
          

v

E
=

v

E
          

v

E
=

v

E

Equation 1-42

and

A =
0
0
0

Equation 1-43

Then the elastic constant matrix C may be written as

C =

1 v v S v v v S v v v S 0 0 0

v v v S (1 v v )S v v v S 0 0 0

v v v S v v v S 1 v v S 0 0 0

0 0 0 G 0 0

0 0 0 0 G 0

0 0 0 0 0 G

Equation 1-44
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with

S

E
=

S

E
=

S

E
= (1 v v v v v v v v v v v v )

Equation 1-45

If only the terms above the principal diagonal of F are defined, the inverted matrix may be 
written as

C =

S 1 v
E

E
S v + v v

E

E
S v + v v 0 0 0

S 1 v
E

E
S v + v v

E

E
0 0 0

S 1 v
E

E
0 0 0

G 0 0

G 0

sym G

Equation 1-46

and

S

E
=

S

E
=

S

E
= 1 v

E

E
v

E

E
v

E

E
2v v v

E

E

Equation 1-47

If the material is isotropic so that

E = E = E = E

Equation 1-48 a

v = v = v = v = v = v = v

Equation 1-48 b

G = G = G = G =
E

2(1 + v)

Equation 1-48 c

= = =

Equation 1-48 d
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the elastic coefficient and material property matrices become

F =

1

E

v

E

v

E
0 0 0

1

E

v

E
0 0 0

1

E
0 0 0

2(1 + v)

E
0 0

2(1 + v)

E
0

sym
2(1 + v)

E

Equation 1-49

C =

(1 v)E

(1 + v)(1 2v)

vE

(1 + v)(1 2v)

vE

(1 + v)(1 2v)
0 0 0

(1 v)E

(1 + v)(1 2v)

vE

(1 + v)(1 2v)
0 0 0

(1 v)E

(1 + v)(1 2v)
0 0 0

E

2(1 2v)
0 0

E

2(1 2v)
0

sym
E

2(1 2v)

Equation 1-50

and

CA =

E

1 2v
E

1 2v
E

1 2v
0
0
0

Equation 1-51
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1.3.2.Plane Strain

For a body in a state of plain strain, the displacements, and therefore the loading are 
assumed to be independent of one coordinate, say the z-coordinate, so that

= = = 0

Equation 1-52

Then for an orthotropic material with one of the material axes coinciding with the longitudinal 
axis

= = 0

Equation 1-53

and

= v + v E T

Equation 1-54

The remaining stresses are given in the material coordinate system by

=

S 1 v
E

E
S v + v v

E

E
0

S 1 v
E

E
0

sym G

+ v
+ v

0

T

Equation 1-55

If the angle between the x', y' coordinate axes and the x, y material axes are denoted by 
(positive in the counterclockwise direction), then the stress0strain relations become

=

C C C

C C

sym C

A

A

A

T

Equation 1-56

with

C

C
= S 1 v

E

E
cos
sin

+ S 1 v
E

E
sin
cos

+ 2S v v v
E

E
+ 4G sin cos

Equation 1-57 a
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C = S 1 v
E

E
+ S 1 v

E

E
2S v + v v

E

E
4G sin cos + G

Equation 1-57 b

C = S 1 v
E

E
+ S 1 v

E

E
2S v + v v

E

E
4G sin cos

+ S v + v v
E

E

Equation 1-57 c

C

C
= S v + v v

E

E
S 1 v

E

E
+ 2G cos

sin

+ S 1 v
E

E
S v + v v

E

E
2G

sin

cos
sin cos

Equation 1-57 d

and

A = S v 1 v
E

E
+ + v + v + v v

E

E
cos

+ + v v + v v
E

E
sin S 1 v

E

E
+ v sin

Equation 1-58 a

A = S v 1 v
E

E
+ + v + v + v v

E

E
sin

+ + v v + v v
E

E
cos S 1 v

E

E
+ v cos

Equation 1-58 b

A = S 1 v
E

E
+ v

+ S v + v v
E

E
+ v v

S 1 v
E

E
+ v sin cos

Equation 1-58 c
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For an isotropic material, the stress-strain relationship in any coordinate system is given by

=

(1 v)E

(1 + v)(1 2v)

vE

(1 + v)(1 2v)
0

(1 v)E

(1 + v)(1 2v)
0

sym
E

2(1 + v)

1
1
0

E T

(1 + v)(1 2v)

Equation 1-59

1.3.3.Plane Stress

A body in state of plane stress is characterized by the relations 

= = = 0

Equation 1-60

which are generally satisfied only approximately. Then for an orthotropic material with 
coincident material and body z-coordinate axes, the pertinent strains in the material coordinate 
system are given in terms of the remaining stress components by

=

1

E

v

E
0

1

E
0

sym
1

G

+

0

T

Equation 1-61

which can be inverted to yield

=

E

1 v
E

E

v E

1 v
E

E

0

0

sym G

T

T

Equation 1-62

If the body coordinates axes x', y' are rotated through a counterclockwise angle with 
respect to the material x, y axes, the stress strain relations are given in body coordinates by
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=

C C C

C C

sym C

A

A

A

T

Equation 1-63

and

C

C
=

1

1 v
E
E

E cos
sin

+ 2v E sin cos + E sin
cos

+ 4G sin cos

Equation 1-64 a

C =
1

1 v
E

E

E + E 2v E 4G sin cos + G

Equation 1-64 b

C =
v E

1 v
E

E

1

1 v
E

E

E + E 2v E 4G sin cos

Equation 1-64 c

C

C
=

1

1 v
E
E

E v E 2G sin
cos

1

1 v
E
E

E v E 2G cos
sin

sin cos

Equation 1-64 d

For an isotropic material the stress-strain relations in any orthogonal coordinate systems 
are

=

E

1 v

vE

1 v
0

E

1 v
0

sym
E

2(1 + v)

1
1
0

E T

1 + v

Equation 1-65
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and

A

A
= E + v E cos

sin
+ v E + E sin

cos

1

1 v
E

E

Equation 1-66 a

A = E 1 v + v E
sin cos

1 v
E

E

Equation 1-66 b



FUNDAMENTAL RELATIONS FOR LINEARLY ELASTIC SOLIDS

31

1.3.4.Axisymmetric Stress State

A final special care is that of a body of revolution in a state of axisymmetric stress. In this 
case, a cylindrical coordinate system (Fig. 9) is used, with the displacement ur and uz and the 
temperature independent of the coordinate and u equal to zero. The non-zero strains are 
then

=
u

r

Equation 1-67 a

=
u

z

Equation 1-67 b

FIGURE 9 CYLINDRICAL COORDINATE SYSTEM
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=
u

r

Equation 1-67 c

=
u

z
+

u

r

Equation 1-67 d

The material is assumed to be locally conically orthotropic. One material axis coincides with the 

radial direction (Fig. 10). Then shearing stresses s n vanish and the relations between the 
remaining stresses and strains are given by

FIGURE 10 DIRECTIONS OF MATERIAL ORTHOTROPY AT A 
POINT IN A BODY OF REVOLUTION
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=

1

E

v

E

v

E
0

1

E

v

E
0

1

E
0

1

G

+ T

Equation 1-68

or in the inverted form

=

C C C 0

C C 0

C 0

sym G 0

T

Equation 1-69

with

C = 1 v
E

E
S

Equation 1-70 a

C = v + v v
E

E
S

Equation 1-70 b

C = v + v v
E

E
S

Equation 1-70 c

C = 1 v
E

E
S

Equation 1-70 d

C = v + v v
E

E
S

Equation 1-70 e
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C = 1 v
E

E
S

Equation 1-70 f

and

S

E
=

S

E
=

S

E
= 1 v

E

E
v

E

E
v

E

E
2v v v

E

E

Equation 1-71

In the r, z coordinate system the relations become

=

C C C C

C C C

C C

sym C

A

A

A

A

T

Equation 1-72

where

C = C cos + C sin + 2 C + 2G sin cos

Equation 1-73 a

C = C + C + C 2 C + 2G sin cos

Equation 1-73 b

C = C cos + C sin

Equation 1-73 c

C = C cos C sin C + 2G (cos sin ) sin cos

Equation 1-73 d

C = C sin + C cos + 2 C + 2G sin cos

Equation 1-73 e

C = C sin + C cos

Equation 1-73 f

C = C sin C cos + C + 2G cos sin sin cos

Equation 1-73 g
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C = C

Equation 1-73 h

C = C C sin cos

Equation 1-73 i

C = G + C + C 2 C + 2G sin cos

Equation 1-73 j

and

A = C + C + C cos + C + C + C sin

Equation 1-74 a

A = C + C + C sin + C + C + C cos

Equation 1-74 b

A = C + C + C

Equation 1-74 c

A = C C + C C + C C sin cos

Equation 1-74 d

For an isotropic material the stress-strain relations are

=

(1 v)E

(1 + v)(1 2v)

vE

(1 + v)(1 2v)

vE

(1 + v)(1 2v)
0

(1 v)E

(1 + v)(1 2v)

vE

(1 + v)(1 2v)
0

(1 v)E

(1 + v)(1 2v)
0

E

2(1 + v)

1
1
1
0

E T

1 2v

Equation 1-75
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Chapter 2. The Finite Element 
Method
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2.1. The Principle of Minimum Potential Energy
A variational principle which is equivalent to the differential equations of equilibrium and 

boundary conditions of linear elastic solids may be derived from the principle of virtual work. 
This principle may be expressed mathematical as

dV = t udA + f udV

Equation 2-1

where integrals are over the volume V and over the surface S of the deformed body. The left side 
of the equation is called the internal virtual work, the virtual work of internal forces, while the 
right side is the virtual work of surface and body forces. Here is the actual stress matrix 
satisfying the equations of equilibrium, tn is the surface stress vector, f is a body force vector 
(force per unit volume)

f =

f

f

f

Equation 2-2

u is an arbitrary infinitesimal change in the displacement vector u, and

= =

u

u

u

u
+

u

u
+

u

u
+

u

Equation 2-3
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If the surface is divided into the region Su on which displacements are prescribed and S on
which the stress vector is prescribed, and if the displacement matrix u is chosen so as to satisfy 
the displacement boundary conditions on Su, the principle of virtual work may be rewritten for a 
linearly elastic body which satisfies Hooke's law as the principle of minimum potential energy

= 0

Equation 2-4

where

= C
1

2
A T u f dV u tdS

Equation 2-5

The functional is called the potential energy of the deformed body. The integral

U =
1

2
C dV

Equation 2-6

is called the strain energy of the body. The principle may be stated as follows:

Of all displacement states which satisfy boundary conditions on displacement, the unique 
displacement state which satisfies the equations of equilibrium and boundary conditions on stress 
minimizes the potential energy of the deformed body.

Variational principles in which quantities other than the displacements vary may be obtained [10].
The principle of minimum potential energy, however, is the statement most commonly used in 
finite element approximations.

2.2. Strain Energy Expressions for Beams, Plates and 
Shells

The analysis of structures which have one or two dimensions small compared to the others is 
usually accomplished with the help of simplifying assumptions. These are discussed below. It 
will be noted that in all cases the strain energy is expressible as an integral involving an 
integrand of the form TC .
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2.2.1.Straight Beams

A beam is a three dimensional structure for which the length is large compared to the width or 
depth of the cross-section. The reference axis defined by the line joining the centroid of each
perpendicular cross-section is straight. When shear deformations are taken into account, the 
stretching and bending displacements are assumed to be given by the following:

Plane cross-sections perpendicular to the undeformed centroidal axis remain plane and 
unchanged in shape but translate and rotate with respect to the plane normal to the deformed 
centroidal axis. Then for small deformations the deflection can be shown to be of the form

u = u (x)

Equation 2-7a

u = u (x)

Equation 2-7b

u = u (x) y (x) + z (x)

Equation 2-7c

where y and z are rotations of the cross-section about the y and z axes, respectively. In 
addition, torsional deformations are assumed to be governed by St. Venant torsion theory 
wherein the cross-sections rotate as rigid bodies about the x-axis through an angle which varies 
linearly with distance from the origin and undergo axial displacements which are a functional 
only of position in the cross-section. Then

u = w(y, z)

Equation 2-8a

u = xz
d

dx

Equation 2-8b

u = xy
d

dx

Equation 2-8c

where w is the cross-sectional warping function and is the constant rate of change of the 

angle of rotation about the x-axis. Then the non-zero strains are given by
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=
du

dx
y

d

dx
+ z

d

dx
T

Equation 2-9a

=
du

dx
+

w

y
+ y

d

dx

Equation 2-9b

=
du

dx
+

w

z
+ y

d

dx

Equation 2-9c

With the additional assumption that the direct stresses yy and zz are negligible compared to xx,
stress resultants are defined in terms of deformations by

P = dA = E A
du

dx
TdA

Equation 2-10a

M = z dA = E I
d

dx
I

d

dx
z TdA

Equation 2-10b

M = y dA = E I
d

dx
I

d

dx
y TdA

Equation 2-10c

V = dA = k GA
du

dx

Equation 2-10d

V = dA = k GA +
du

dx

Equation 2-10e

T = y z dA = GJ
d

dx

Equation 2-10f
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These may be expressed in matrix form as

p = Ce A

Equation 2-11

with

p = V V V TM M

Equation 2-12a

e =
du

dx
   

du

dx
   

du

dx
+    

d

dx
   

d

dx
   

d

dx

Equation 2-12b

C =

EA 0 0 0 0 0

k GA 0 0 0 0

k GA 0 0 0

GJ 0 0

EI EI

sym EI

Equation 2-12c

A = E T dA       0      0      0      z T dA     y T dA

Equation 2-12d

Here Px is the axial force, while Vy and Vz are cross-sectional shearing forces. Bending moments 
about the y and z axes are denoted by My and Mz, respectively and T is the torsional moment 
about the x-axis. Positive directions for these quantities are shown in Figure 11. Geometric 
properties are denoted by A, the cross-sectional area, and lyy. Lzz and Iyz, the cross-sectional 
moments and product of inertia:
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FIGURE 11 POSITIVE DIRECTIONS FOR STRESS RESULTANTS

I = z dA

Equation 2-13a

I = y dA

Equation 2-13b

I = yz dA

Equation 2-13c
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For principal axes, Iyz vanishes. J is the cross-sectional torsion constant and has no simple 
geometric interpretation except for solid or annular circular cross-sections for which it is the
polar moment of inertia. The constants ky and kz are correction factors introduced to account for 
the actual non-uniform distribution of shearing stresses and strains over the beam cross-section

The strain energy stores in the beam is now given by

U =
1

2
e Cedx

Equation 2-14

Axial stresses in the beam may be calculated from the expression

=
P

A
y

M

I
+ z

M

I

Equation 2-15

The maximum shearing stress due to torsion is calculated from the formula

=
TC

J

Equation 2-16

Where Ctor is a constant which depends on the shape of the cross-section [1].

2.2.2.Flat Plates

A plate is a structure for which one of the dimensions, the thickness, is small compared to 
the length and width. A reference plane is situated midway between the top and bottom plate 
surfaces. Deformations are given by assumptions which are an extension of those for beams:

Straight lines initially perpendicular to the undeformed plate middle surface remain 
straight and unchanged in length but rotate with respect to the normal to the deformed middle 
surface.

The displacement components can then be shown to be given by

u = u(x, y) + z (x, y)

Equation 2-17a

u = v(x, y) z (x, y)

Equation 2-17b
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u = w(x, y)

Equation 2-17c

where x and y are rotations about the x and y axes, respectively. The strains are now found to 
be

=
u

x
+ z

x

Equation 2-18a

=
v

x
z

y

Equation 2-18b

= 0

=
u

x
+

v

x
+ z

y x

Equation 2-18c

=
w

x
+

Equation 2-18d

=
w

x

Equation 2-18e

With the direct stress zz assumed to be negligible, the strain energy may be derived for 
an isotropic plate as

U =
1

2
e Ce dxdy

Equation 2-19

where

e =
u

x
   

v

y
   

u

y
+

v

x
   

y
  

y
   

y x
   

w

x
   

w

y
+

Equation 2-20
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C =

K vK 0 0 0 0 0 0
K 0 0 0 0 0 0

1 v

2
K 0 0 0 0 0

D vD 0 0 0
D 0 0 0

1 v

2
D 0 0

5

6
Gh 0

sym
5

6
Gh

Equation 2-21

and

K =
Eh

1 v

Equation 2-22a

D =
Eh

12(1 v )

Equation 2-22b

The integration is over the middle surface area of the plate. The factor 5/6 is inserted into the 
transverse shearing strain expression to account for the nonuniform distribution of shear stress 
and strain over the plate thickness.

If transverse shearing strains are neglected, the normal to the undeformed plate middle 
surface remains normal to the deformed middle surface. Then

=
w

x

Equation 2-23a

=
w

y

Equation 2-23b

and the non-zero strains become

=
u

x
z

w

x

Equation 2-24a
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=
v

y
z

w

y

Equation 2-24b

=
u

y
+

v

x
2z

w

x y

Equation 2-24c

The strain matrix e and C are then replaced in Eq. (2.20) by

e =
u

x
   

v

y
   

u

y
+

v

x
   

w

x
   

w

y
   

w

x y

Equation 2-25

C =

K vK 0 0 0 0
K 0 0 0 0

1 v

2
K 0 0 0

D vD 0
D 0

sym 2(1 v)D

Equation 2-26
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2.3. The Finite Element Method
In the implementation of the principle of minimum potential energy as the basis of 

approximate solutions by means of the finite element method of analysis, the region under 
consideration is divided into a finite number of subregions, say N, called “elements” (Fig. 
12).

FIGURE 12 DIVISION OF A REGION INTO SUBREGIONS

The total potential energy of the region is then the sum of the potential energy of the 
subregions, i.e.

=

Equation 2-27
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with

= C
1

2
A T f u dV t udS

Equation 2-28

The volume Vi is that of the ith element while S i is that portion of the surface which bounds the 
ith element.

The displacement matrix u is now represented within a typical element as

u = D q

Equation 2-29

where the components of qi are displacements and possibly displacement derivatives at a number 
of nodal points of the element and those of Di are functions of position within the element, called 
interpolation functions, which define the variation of the displacement matrix within the element 
and on its surface. Since the displacement matrix u must be continuous over the entire region, it 
follows that the displacements at the common nodes of the interelement boundary of two 
adjoining elements must be the same and that the functional representations of the displacements 
over the common · boundary must be identical. The strain matrix i is then obtained as

= B q

Equation 2-30

in which Bi is a matrix the elements of which are, in general, function of position. Thus

= q
1

2
k q F

Equation 2-31

with

k = B C B dV

Equation 2-32

and
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F = D fdV + D t dS + B C A T dV

Equation 2-33

The matrix ki is called the element stiffness matrix. The components of Fi are equivalent 
applied nodal forces which are consistent with the assumed displacement distribution.

With some manipulation, the potential energy of the entire region given by

=

Equation 2-34

may be expressed in the form

= q
1

2
Kq F

Equation 2-35

where q is the matrix of all nodal displacements and derivatives arranged consecutively, K is the 
assembled symmetric stiffness matrix of the entire region and F is the assembled nodal load 
matrix. The relationship between qi and q may be defined by

q = M q

Equation 2-36

where Mi is a matrix giving the identification between nodal displacements qi of region I and the 
elements of the total nodal displacement matrix q. Then the stiffness matrix K is given by

K = M k M

Equation 2-37a

and

F = M F

Equation 2-37b
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The potential energy must now be minimized with respect to each of the unknown nodal 
displacements and derivatives, say M in number, while those nodal displacements on the surface 
Su must satisfy the prescribed displacement conditions. Then

=
q

q = 0

Equation 2-38

where the summation is over all unknown values of qj. Since the values of qj are arbitrary, the 
minimization procedure leads to the set of equations

q
= 0          j = 1, 2, … M

Equation 2-39

where there are as many equations as there are unknown values of qj.

The procedure outlined above leads to nodal values which, in general, are an 
approximation of the actual nodal values and which define approximate element stresses 
obtained from the equation

= C B q

Equation 2-40

The accuracy of the approximation may be improved by

a) Decreasing the size of the subregions and increasing their number, with the interpolation 
functions for each region unchanged (the h-method).

b) Increasing the number of nodal points and the complexity of the polynomial interpolation 
functions in the subregions, with the number of subregions unchanged (the p-method).

c) A combination of methods (a) and (b) wherein the size of some elements is decreased and 
their number increased with no change in the interpolation functions while for other 
elements the size is unchanged but the complexity of the interpolation functions and 
number of nodal points is increased (the h-p method).
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2.4. Interpolation Functions
The interpolation functions which define element displacements at points other than at the 

nodes are not completely arbitrary but are required to satisfy certain conditions imposed by the 
form of the strain energy function and by convergence requirements:

a) Nodal displacements consistent with constant strain should not yield nonconstant strains 
in the element. Nodal displacements consistent with rigid body motion should yield zero 
element strains.

b) The derivation of section 2.3 requires that the displacements along the common edge of 
adjoining elements are such that the stresses or forces along that edge do no work in 
acting through the virtual displacements associated with each element. For strains 
involving only first derivatives of displacements, the implication is that displacements 
along the common edge of adjoining elements, and hence the functions defining those 
displacements, should be identical; for strains involving second derivatives (beams, 
plates, shells), first derivatives of displacements should be identical as well. In particular 
the derivatives normal to the common edge should be identical in this case. 

Elements involving displacement functions satisfying these conditions are called conforming 
elements. 

The satisfaction of condition (b) may be difficult to achieve. It is possible, however, to obtain 
convergence of the finite element process with the use of displacements functions which violate 
continuity requirements, but which satisfy continuity in the limit as the size of the element 
decreases. Such elements are called non-conforming elements. The condition is ensured if the 
previous constant strain requirement (a) is satisfied and if displacement continuity occurs under a 
constant strain condition. A test for the achievement of such continuity is known as the "patch 
test". It requires that an arbitrary group of elements having a common node be given nodal 
displacements corresponding to a constant strain condition. The finite element equilibrium 
equation at that node must then be satisfied identically to ensure continuity satisfaction.

The interpolation functions are usually taken as polynomials of orders depending on the 
number of nodes and nodal variables. The coefficients of the polynomial terms are equal in 
number to the total number of nodal variables and are obtained by requiring that the function 
give the desired nodal variables at the chosen nodal points.

Linear interpolation functions yield the simplest elements and are often used. For a 
normalized square, for example, displacements are expressible as (Fig. 13)

u = N u

Equation 2-41a
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v = N v

Equation 2-41b

with

N = (1 )(1 )

N = (1 )(1 )

N = (1 )(1 + )

N = (1 )(1 + )

1 +1
1 +1

Equation 2-42

FIGURE 13 LINEAR INTERPOLATION FUNCTIONS
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In the p-method of analysis considerably increased accuracy relative to the number of 
additional unknowns is achieved by increasing the complexity of the polynomial interpolation 
function while keeping the element size constant. Additional unknown quantities associated with 
the element can be defined in a variety of ways. For problems which require only displacement 
continuity (called C0 continuity) displacements at additional nodal points along the element sides 
and in the element interior may be introduced. It is also possible to use higher order derivatives 
at the original nodes as additional unknowns, in which case continuity of first derivatives as well 
as displacements (called C1 continuity) is obtainable.

In both of the above types of higher order elements, the stiffness matrix must be recalculated 
anew for each new set of unknowns. Hierarchic interpolation functions have the advantage of 
requiring only the calculation of additional row and column terms for the added unknowns. For 
these interpolation functions, nodes are introduced at element corners. Unknown quantities for 
C0 continuity are chosen as corner node displacements and as higher order derivatives at the 
element side midpoints. Each additional set of derivatives is associated with polynomial terms 
having the same order as the derivatives and which vanish at the element corners. Hierarchical 
shape functions for C1 continuity can be obtained but with more difficulty.
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2.5. Isoparametric Elements
Element interpolation functions are readily derived for single geometric shapes, i.e., 

triangles, rectangles, tetrahedrons, and cubes. In many applications of the finite element method 
it may be desirable, however, to consider elements with more irregular shapes and with curved 
rather than straight edges. In particular, curved elements may be used to closely model curves or 
surfaces. Interpolation functions for simple shapes may be extended to these more complicated 
shapes by a transformation of coordinates which map the boundaries of the irregular element 
onto those of the regular element. While this transformation can be effected in many ways, a 
very useful mapping is one for which the mapping function and the interpolation function are of 
the same form. The elements resulting from this type of mapping are called isoparametric 
elements. If the simple element is conforming, the isoparametric element will likewise be 
conforming.

Displacements in the simple geometric shape are assumed in the form

u( ) = D( )q

Equation 2-43

where q is the matrix of nodal unknowns and coordinates denote non-dimensional position in 
the element. These can be normalized area and volume coordinates for triangles and tetrahedra, 
respectively, and normalized Cartesian coordinates in rectangles and cubes. The transformation 
mapping the complex element onto the simple element is then taken as

x = D( )x

Equation 2-44

with x the matrix of nodal coordinates. Thus the number of nodes that must be considered on 
each edge is governed by the shape of the element to be mapped. For example, a quadrilateral 
can be obtained by using a linear interpolation function for a square and the four corner nodes. 
The inclusion of additional nodes and interpolation functions of higher order will result in 
quadrilaterals with curved sides (Figure 14).
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FIGURE 14 ISOPARAMETRIC MAPPINGS OF QUADRILATERAL 
REGIONS

In order to use isoparametric elements, the variational functions which are expressed in 
terms of a Cartesian coordinate system must be expressed in terms of the parametric coordinates. 
In two dimensions

x = x( , )

Equation 2-45a

y = y( , )

Equation 2-45b
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so that

x
=

x
+

x

Equation 2-46a

y
=

y
+

y

Equation 2-46b

where

x

y

x

y

=
1

J

0 0 0 1
0 1 0 0
0 0 1 0
1 0 0 0

y

x

y

y

Equation 2-47

and

J = det

x x

y y

Equation 2-48

Thus

u

x
v

y
u

y
+

v

x

=
1 0 0 0
0 0 0 1
0 1 1 0

u

x
u

y
v

x
v

y

=
1

J

1 0 0 0
0 0 0 1
0 1 1 0

y y
0 0

x x
0 0

0 1
y y

0 0
x x

y

y

v

v

Equation 2-49

And
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dxdy = Jd d

Equation 2-50

The resulting integrals must be evaluated numerically since exact integration is usually difficult 
or impossible in terms of known functions.

It is also possible to define elements with different interpolation functions and mapping 
functions, i.e.,

u( ) = D( )q

Equation 2-51a

x = D( )x

Equation 2-51b

with

D( ) D( )

Equation 2-51c

If the interpolation functions are of higher order than the mapping functions, the element is said 
to be subparametric. Hierarchic elements are subparametric if a linear or quadratic mapping 
transformation is used. If the interpolation functions are of lower order than the mapping 
functions, the element is said to be superparametric. Subparametric elements generally satisfy 
convergence and completeness requirements. Superparametric elements may cause problems, 
however, and must be investigated for completeness and compatibility.

2.6. Numerical Integration
While the integrals required for stiffness and nodal force matrices may often be expressed in 

explicit form, it is sometimes more convenient and less time consuming to use methods of 
numerical integration for their calculation. These consist of expressing the integral as a 
summation of products of values of the function at specified sampling points and weighting 
constants.

In one dimension, then,

f( )d = W f( )

Equation 2-52
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If the values of i are equally spaced, m sampling points yield m unknown values of Wi which 
can be chosen to integrate a polynomial of degree m-1 exactly. This method is known as 
Newton-Cotes quadrature. If, however, the locations of the sampling points are unknown as well, 
m sampling points yield 2m unknowns which can integrate a polynomial of 2m-1 exactly. This 
method is known as Gauss quadrature and is preferable in that fewer sampling points are 
required for a polynomial of a given degree. Consider, for example, a third degree polynomial

f = a + b + c + d         1 < < 1

Equation 2-53

Then

f d = 2a +
2

3
c

Equation 2-54

The use of two Guass points at = 1, 2 then requires that

W a + b + c + d + W a + b + c + = 2a +
2

3
c

Equation 2-55a

Equating coefficients of a, b, c and d on both sides of the equations yields four relations from 
which is obtained

W = W = 1

Equation 2-55b

= =
1

3

Equation 2-55c

Newton Cotes integration would have required the use of 4 sampling points.

For a square or a cube, integration can be considered to be carried out first in one 
direction and then in the other. Thus for a two-dimensional square

f( , )d d = W f , d = W W f( , )

Equation 2-56
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where the point locations and weighting functions are identical to those of one dimensional 
Gauss quadrature. The number of sampling points need not be the same in both directions but are 
usually taken to be identical. For a cube, similarly,

f , , d d d = W W W f( , , )

Equation 2-57

2.7. Reduced Integration
While numerical integration using an appropriate number of Gauss sampling points can 

exactly integrate polynomial expressions of a given order, exact integration may lead to 
erroneous results in some cases. Examples of problems for which errors will occur with exact 
integration are those involving isotropic elasticity elements with Poisson's ratio v near 1/2 or thin 
beam, or plate and shell elements with shear flexibility. The strain energy associated with 
volume change should become small compared to to strain energy of shape change as Poisson's 
ratio approaches 1/2, in the former case. In the latter case, the strain energy associated with shear 
deformation should become small compared to the strain energy of bending as the thickness 
decreases.

The difficulty arises from the circumstance that the part of the structural stiffness matrix 
associated with the vanishing portion of the strain energy actually becomes increasingly
dominant and the structure overly stiff. The displacements obtained from the analysis then 
decrease to zero as Poisson's ratio approaches 1/2 or thickness approaches zero, giving a set of 
erroneous displacements which satisfies the condition of zero volume change or of zero shearing 
deformation. The situation is usually remedied by reduced integration, i.e., the use of fewer 
Gauss sampling points for numerical integration of the offending terms than are required for 
exact integration. If the number of points is reduced sufficiently, that pan of the stiffness matrix 
will become singular and will result in accurate solutions.

2.8. Solution of simultaneous Linear Expressions
The set of finite element equilibrium equations, however obtained, must b e solved to achieve 

the purpose of the analysis. Although there are a number of ways to solve simultaneous linear 
equations, the method which is most widely used is that of Gauss elimination. In this method the 
equation

Kq = F

Equation 2-58a

is transformed to the form
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Uq = F

Equation 2-58b

where U is an upper triangular matrix, i.e., all elements of the matrix below the principal 
diagonal are zero. The process of matrix transformation to upper diagonal form consists of using 
the first equation to eliminate q1 from the second and succeeding equations. The second equation 
is then used to eliminate qz from the third and succeeding equations. The process of elimination 
is continued until the last equation consisting of a single term in the U matrix is obtained. The 
values of q are then obtained by solving the last equation for qN alone, then substituting the 
result in the preceding equation to yield qN-1, and so on.

2.9. Stress Calculations
The end result of the analysis, the distribution of stresses in the structure, can be obtained 

from an appropriate finite element expression once the displacements are calculated. The stress 
values will vary over the element. At the boundary between adjoining elements with only C0

continuity imposed, the first derivatives of displacement normal to the edge and henc the stresses 
will be discontinuous. Similarly for beams, plates and shells which require C1 continuity, the 
second and mixed derivatives of displacements will usually be discontinuous at the boundary of 
adjoining elements and will lead to discontinuous stresses. The question of what are accurate 
stress values therefore arises. Investigations have shown that the most accurate stress values are 
those at the Gauss integration points. These values are calculated in the analysis and are 
extrapolated to yield stresses at element boundaries.



VIBRATION FREQUENCIES OF STRUCTURES

61

Chapter 3. Vibration Frequencies of 
Structures
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3.1. Vibration Modes and Frequencies
A structure which is initially disturbed from a rest state will continue in motion without the 

application of force. For small deformations, this motion can be expressed as the superposition of 
vibration modes, each of which has a sinusoidal time variation with a distinct frequency. Such 
motions are called free harmonic vibrations. The modes of vibration are orthogonal, a fact which 
renders them useful in solving problems of the response of structures under time dependent 
loading as well as under specified initial conditions.

3.2. Finite Element Analysis
The variational principle for determination of vibration modes and frequencies is given by

(U + V) = 0

Equation 3-1

where U is the strain energy stored in the body given by

U =
1

2
C dv

Equation 3-2

And V is the kinetic energy of the body

V =
1

2
 

u

t
+

u

t
+

u

t
dv

Equation 3-3

For plates and shells where the displacements are assumed to be given by

u = u (x, y, t) + z (x, y, t)

u = u (x, y, t) z (x, y, t)

u = u (x, y, t)

the kinetic energy becomes

V =
1

2

u

t
+

u

t
+

u

t
+

h

12 t
+

t
dA

where integration is over the area of the middle surface.
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The displacement are expressed as the product of a function of space and a harmonic 
function of time

u = u (x, y, z)e

Equation 3-4a

u = u (x, y, z)e

Equation 3-4b

u = u (x, y, z)e

Equation 3-4c

The use of the notation

u =

u

u

u

Equation 3-5

and for the space portion of the strain matrix, yields the variational equation as

1

2
C u u dv = 0

Equation 3-6

The usual finite element approximations then lead to a set of homogeneous simultaneous 
equations of the form

K M {q} = {0}

Equation 3-7

where K is the static stiffness matrix of the structure and M is a mass matrix. If the interpolation 
functions for displacements are used to determine the mass matrix M, the result will be banded. 
It is called the consistent mass matrix since it is consistent with the assumptions used to 
determine K. Sometimes a diagonal matrix M, called a lumped mass matrix, is used. This implies 
that the mass of the structure is concentrated at nodal points. There are no terms in the mass 
matrix for those equations corresponding to minimization with respect to nodal displacement 
derivatives so that nodal displacement derivatives may be expressed in terms of nodal 
displacements and eliminated from the equations. Diagonalization of the mass matrix may also 
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be obtained by using a diagonal value which is the sum of all of the mass matrix elements in a 
given row and avoids the elimination of nodal displacement derivatives.

For values of q other than zero to exist, the matrix of coefficients of Eqs. (3.7) must be 
singular. Thus the characteristic equation for the vibration frequencies is given by

det K M = 0

Equation 3-8

The corresponding nodal values q which determine the vibration mode shapes are obtained by 
eliminating one of Eqs. (3.7) and solving for N-1 of the elements of q in terms of the Nth
element. The vibration modes may be normalized to satisfy the weighted orthogonality condition

q [M] q =

Equation 3-9a

where

=
0 if i j
1 if i = j

Equation 3-9b

3.3. Solution of Linear Eigenvalue Problems
The set of equations described by

K M {q} = 0

Equation 3-10

is called a linear eigenvalue problem. The characteristic equation for the eigenvalue 2 is given 
by

det K M = 0

Equation 3-11

which, if expanded, would yield a polynomial equation for 2. The order of the polynomial is 
equal to the order of the matrices involved. Unless the matrices are of low order, expansion is not 
attempted. In any case, exact solutions are known only for polynomials of fourth order or less. 
Thus iterative numerical methods must be used. There are numerous methods [11], some of which 
are discussed below.
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3.3.1.Subspace Iteration[11, 13]

When the number of eigenvalues of the system of equations is large, determination of all 
them may be very time consuming. In many cases, a smaller number of eigenvalues and 
eigenvectors may be sufficient and alternative methods are used. One of these is the method of 
subspace iteration in which an initial set of mode shapes which are likely to represent the 
important modes of the structure is chosen. If the eigenvalue problem is of nth order the number 
of modes chosen is m<<n. These modes are arranged by column to produce the matrix <1>1 
which is of order n x m. The equation

[K]      T  =    [M]      

Equation 3-12

is then solved for T2. Define now

K( )
( )

= T KT

Equation 3-13a

M( )
( )

= T MT

Equation 3-14a

and solve, say by the Jacobi method, for the eigenvalues and eigenvectors of the system

K
( )

V = M
( )

V

Equation 3-15

An improved set of eigenvectors is now

= T V

Equation 3-16

The process is repeated using the operations

KT = M

Equation 3-17a

K
( )

= T KT

Equation 3-17b

M
( )

= T MT

Equation 3-17c
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K
( )

V = M
( )

V

Equation 3-17d

= T V

Equation 3-17e

until convergence is achieved.

A check on whether the desired eigenvalues and eigenvectors have been obtained is 
afforded by the S turm sequence property of the eigenvalue problem which states that if the 
matrix [K – 2M] with a given value of 2 is decomposed into the form

K M = S S

Equation 3-18

where S is an upper triangular matrix, the number of eigenvalues less than 2 is equal to the 
number of negative diagonal elements of S . Thus if the subspace iteration method has produced 
m eigenvectors which are supposedly the m lowest eigenvectors, then the use of a value of 2

slightly greater than should produce exactly m negative diagonal values of S.

3.3.2.Lanczos Algorithm

A method of eigenvalue extraction which has been found to involve considerably less 
computation time for large eigenvalue problems is the Lanczos algorithm. The stiffness matrix K 
is decomposed into the form

K = LL

Equation 3-19

where L is a lower triangular matrix. The substitutions

Y = L q

Equation 3-20a

=
1

Equation 3-20b

transform the eigenvalue problem to the form

AY = Y

Equation 3-21a
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with

A = L M L

Equation 3-21b

The matrix A is then transformed to a symmetric tridiagonal form with the use of an orthogonal 
matrix V such that

V AV = T

Equation 3-22

with T tridiagonal. The substitution

Y = VQ

Equation 3-23

results in

TQ =

1 1

1 2 2

2 3 3

3 4 .

. . .

. . .

n 2 n n 1

n 1 n

Q =
1

Q

Equation 3-24

which can be solved easily for accurate eigenvalues using a determinant search method (the 
bisection method) in conjunction with the Sturm sequence property of the eigenvalues. Not all of 
the n eigenvalues are found. The number of eigenvector components and equations is usually 
truncated to a value m<n, where m is twice the number of desired eigenvalues. The 
corresponding eigenvectors Q may be found by the method of inverse iteration.

The column vectors of the matrix V are generated so that each is orthogonal to the two 
preceding vectors. From the definition

AV = VT

Equation 3-25a

can be obtained the relation
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AV = V + V + V

Equation 3-25b

Where Vj is the jth column vector of V and satisfies the relation

V V =

Equation 3-25c

If Vi and Vi-1 are known, then

= V AV

Equation 3-26a

= W W

Equation 3-26b

with

W = AV V V

Equation 3-26c

and

V =
1

W

Equation 3-26d

The sequence of operations is started by using the first column of the unit vector as V1 and 0

taken as zero.

After a number of steps, the Lanczos vectors Vi may lose orthogonality because of 
truncation of the number of eigenvalues and will require reorthogonalization. Vector 
reorthogonalization is achieved by a procedure which can be summarized as follows

S = P P  …  P W

Equation 3-27a

P S = e

Equation 3-27b
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V = P P  … P e

Equation 3-27c

with

P = I

Equation 3-27d

and ej the jth column of the unit matrix. The eigenvectors of the original equation are then 

q = L P P … . . P
Q

0

Equation 3-28
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Chapter 4. Buckling of Structures
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4.1. The Phenomenon of Buckling
In the linear theory of structural analysis, the behavior of a structure under a given loading is 

unique. For specified loading and support conditions the structure can deform in only one way 
and have only one internal stress state. For sufficiently large loads the nonlinear aspects of 
structural behavior can no longer be ignored. One of the causes of nonlinearity is nonlinear 
material behavior for which Hooke's law no longer applies. It is possible, however, for the 
structure to behave in a nonlinear fashion while the material is still in the elastic range. This is 
especially true for structures for which one dimension is small compared to the others, such as in 
long beams or thin plates and shells.

One of the phenomena which may occur is that of buckling. The classic example is that of an 
axially compressed initially straight beam which is found to have two distinct equilibrium 
positions, the straight position and a deflected position, when the load exceeds a certain critical 
value. Similarly, an initially flat plate under inplane loading can deflect laterally and remain in 
equilibrium when the load exceeds a critical value. In both of these cases the critical load is a 
reasonably accurate measure of the load below which deflections will not become excessive. 
Thin shells are also subject to buckling, but the effect of small initial deviations from the 
idealized shape can result in actual critical loads which are very much less than those calculated 
theoretically. For these structures recourse is usually had to empirical "knockdown factors" by 
means of which the theoretical load is reduced.

4.2. Calculation of Critical Loads
Critical loads are calculated by considering a structure which has an initial stress and 

deformation state due to some distribution of externally applied loads with a magnitude governed 
by a proportionality factor . When the linear theory of elasticity is used, the calculated initial 
stress and deformation states are proportional to the external loading and thus have a magnitude 
which varies linearly with . The equilibrium of the structure when arbitrary infinitesimal 
disturbances of the initial deflection state are superimposed is then investigated. The equations of 
equilibrium are linearized with respect to the small disturbances so that their solution by means 
of the finite element method leads to a set of simultaneous linear equations for the modal 
unknowns of the form

K K {q} = {0}

Equation 4-1

where KB is the usual structural stiffness matrix in the absence of applied loading while KG is a 
“geometric stiffness matrix” which is independent of the material properties of the structure.
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For solutions other than the initial stress state to exist, i.e.,

{q} = {0}

Equation 4-2

the determinant of the coefficients matrix must vanish. Then an equation for is given by

det K K = 0

Equation 4-3

The lowest value of which satisfies equation (4.3) is called the critical value, the value at which 
the structure can suddenly undergo large deformations which differ from the expected 
deformation state under the system of loading. The corresponding distribution of nodal values of 
q is called the buckling mode shape. Relative values of q may be calculated by deleting one 
equation from Eqs (4.1) and solving for the ratio of N- 1 of the nodal values and the Nth nodal 
value.

4.3. Variational Principles for Buckling
A variational principle from which critical loads can be obtained is given by

= 0

Equation 4-4

with

=  
1

2
 C +  dv

Equation 4-5a

and

=
u

x
  

u

y
  

u

z
  

u

x
  

u

y
  

u

z
  

u

x
  

u

y
  

u

z

Equation 4-6b
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=

sym

Equation 4-5c

The superscript 0 on the stresses denotes a distribution calculated from linear elasticity theory. 
The coefficient A is the proportionality factor by which the calculated linear stress state must be 
multiplied for buckling to occur. The initial stress state may be the superposition of stress 
distributions with different proportionality factors, i.e.,

=

Equation 4-6

in which case the variational principle becomes

1

2
C + dv = 0

Equation 4-7

The variational principle may be specialized for various types of structures and load conditions.

4.3.1.Inplane Buckling for Plane Stress, Plane Strain, 
Axisymmetric Stress States

For a body in a state of plane stress or plane strain which is subject only to inplane buckling,

u =  =  = 0

while u  and u are functions of x and y only. Then for a orthotropic material

=
u

x

u

y

u

y
+

u

x

Equation 4-8a
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C =

C C C

C C

sym C

Equation 4-8b

=
u

x

u

y

u

x

u

y

Equation 4-8c

=

0 0

0 0

sym

Equation 4-8d

=
1

2
C + da

Equation 4-9

where the integration is over the area of the body.

For an axisymmetric body with an initial axisymmetric stress state and which buckles 
axisymmetrically, the function 1tB is of the same form as given in Eq. (4.9). However, the 
matrices in that expression are now defined by

=
u

r

u

z

u

r

u

z
+

u

r

Equation 4-10a

C =

C C C C

C C C

C C

sym C

Equation 4-10b

=
u

r

u

z

u

r

u

z

u

r

Equation 4-10c
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=

sym

Equation 4-10d

4.3.2.Straight Beams

For buckling of straight beams with shear deformations included, the usual assumptions of beam 
theory are made. Then, with x, y, and z denoting the centroidal longitudinal axis and the 
centroidal principle axes, respectively,

= U
1

2
P

u

x
+

u

x
+

u

x
dx

Equation 4-11

where the strain energy U is given by Eqs. (2.1 2) and (2.14) and P is the axial load calculated 
from a linear analysis and assumed positive in compression. With this formulation, the beam 
element may have an arbitrary orientation in space when the proper axis rotations are made. The 
form of the variational equation implies that interpolation functions chosen for displacements 
and rotations need only satisfy C continuity at element edges.

For overall buckling of trusses, the members are assumed to change orientation but to remain 
straight. Then may be written as

=
1

2
EA

u

x
P

u

x
+

u

x
+

u

x
dx

Equation 4-12

In all functionals, the term P may be deleted since

P

EA
=

E
1

Equation 4-13
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4.3.3.Flat Plates

Assumptions similar to those for linear analysis of flat plates are made for buckling of flat plates. 
Then the functional may be written for an isotropic plate as

= U +
1

2

u

x

u

y

N N

N N

u
x

u
y

dxdy

Equation 4-14

where U is the strain energy given by Eqs. (2.19) to (2.22) and N , N , N are inplane stress 

resultants in the plate prior to buckling. If shearing deformations are neglected for thin plates, the 
strain energy function is replaced by Eqs. (2.19), (2.25), and (2.26). In the former formulation 
C continuity is required whereas in the latter C continuity is needed.

4.4. Calculation of Eigenvalues
The lowest buckling load is generally the only one of interest so that use of the inverse iteration 
method is indicated. Any of the other eigenvalue extraction methods can be used, however.
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Chapter 5. Heat Transfer
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5.1. Equations of Heat Transfer[13]

Let q , q , and q be the heat flux in a body in the , , and directions and the internally 

generated heat flow. Then the heat balance equation is given by

Q
q

x

q

y

q

z
= c

T

t

Equation 5-1

where is temperature, is specific heat, and is mass density.

The Fourier heat conduction equation relates heat flux and temperature for a thermally 
orthotropic body with axes of orthotropy coinciding with the coordinate axes as

q = k
T

Equation 5-2a

q = k
T

Equation 5-2b

q = k
T

Equation 5-2c

with k , k , and k  the thermal conductivities in the principal thermal orthotrophy directions. 

These equations can be expressed in matrix form as

q
q
q

= [ ]

T

T

T

Equation 5-3
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with

[ ] =

k 0 0
0 k 0

0 0 k

Equation 5-4

The three components of heat conduction can be considered to be components of the heat flux 
vector . Similarly the three derivatives of are the three components of the temperature 
gradient vector. Under a rotation of the coordinate system, then, the Fourier heat conduction 
relations become

q
q
q

= [k]

T

x
T

y
T

z

Equation 5-5

where

[k] =

k k k

k k

sym k

= N [ ]N

Equation 5-6

with the rotation matrix given by Eq. (1.8). When the coordinate axis rotation consists of a 
clockwise rotation through an angle about the z-axis, the rotation matrix becomes

N =
cos sin 0

sin cos 0
0 0 1

Equation 5-7

and

[k] =

k cos + k sin k k sin cos 0

k sin + k cos 0

sym k

Equation 5-8
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The heat balance equation may now be written as

x y z
[k]

T

x
T

y
T

z

+ Q = c
T

t

Equation 5-9

When cylindrical coordinates , , and are used, as for a body of revolution, the heat balance 
equation is readily derived as

r

1

r z
[k]

T

r
1 T

r

T

z

+ Q = c
T

t

Equation 5-10

The material is usually assumed to be thermally orthotropic with one axis of orthotropic 
coinciding with the circumferential direction. Then [k] is of the form of Eq. (5.8) with k and 
k replaced by the equivalent conductivities in the r-z plane while k is replaced by the 

conductivity k .

Boundary conditions that may be imposed are the following:

(a) temperature may be prescribed on portion S of the boundary 

(b) heat flux may be prescribed on portion S of the boundary . Since heat flow occurs 
normal to the boundary, the prescribed heat flux is given by

q. n = q n + q n + q n = n n n [k]

T

x
T

y
T

z

= q

Equation 5-11a
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with n the vector normal to the surface S  and n n , and n its components. If the surface is 

insulated

q = 0

Equation 5-11b

(c) convective heat transfer conditions may be prescribed on portion S  of . Then

q. n = h(T T )

Equation 5-12

with h the convective heat transfer or film coefficient and T  the fluid temperature.

In addition, the temperature distribution within the body must be prescribed at time .

5.2. Variational Statement and the Finite element 
Method

An equivalent variational principle valid at every instant of time may be written as

= 0

Equation 5-13

where 

=
1

2

T
x

T
y

T
z

[k]

T
x

T
y

T
z

QT cT
T

t
dxdydz + q TdS

+ h
1

2
T TT ds

Equation 5-14

and is an element of area on the surface . In this formulation  
T

t is not subject to variation.

The body is now divided into elemental subregions and the temperature field within the element 
is represented by

T = {D}{T }

Equation 5-15
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where [D] is a row vector of interpolation or shape functions which depend on the position in the 
element and {T } is a column vector of nodal temperatures and possible derivatives of the
temperatures. The shape function need only satisfy C continuity, i.e., only the function itself 
need be continuous at element boundaries.

Then

T

x
T

y
T

z

= [B]{T }

Equation 5-16

with

[B] =

D

x
D

y
D

z

Equation 5-17

The portion of contributed by each element is then given by

= {T }
1

2
([k ] + [h ]){T } r + r [C ]

T

t
{r }

Equation 5-18

with

[k ] = [B] [k][B]dV

Equation 5-19a

[h ] = h [D] [D]dS

Equation 5-19b
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r = Q[D] dV

Equation 5-19c

r = q [D] dS

Equation 5-19d

C = c[D] [D]dV

Equation 5-19e

r = hT [D] dS

Equation 5-19f

Here V is the volume of the element, Sc is that portion of the boundary Sc which is a boundary 
of the element, and Sq is that portion of the boundary Sq which is a boundary of the element. 
For interior elements these are equal to zero. On the remaining portions of the boundary ST, the 
temperature at nodal points is given by T*

Assembly of the variational functional T yields an expression of the form

= {T}
1

2
K + H {T} R + R + C

T

t
R

Equation 5-20

Where {T} is the matrix of nodal temperatures arranged sequentially and the remaining matrices 
are the assembled versions of those defined by Eqs. (5.19). Minimization with respect to the 
nodal quantities then yields the set of equations

C
T

t
+ [K]{T} = {R}

Equation 5-21
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with

[K] = K + H                     {R} = R + R R

Equation 5-22

Those equations of the above set which represent minimization with respect to nodal 
temperatures on ST should be deleted. In the remaining equations those terms of T t referring 
to temperatures on ST vanish while the corresponding terms in T are set equal to the prescribed 
temperature. This approach can be applied easily if the prescribed temperature is zero since the 
node at which that temperature is prescribed need not be included in the numbering system. For a 
non-zero prescribed nodal temperature T*, another approach is to add a large value of 
conductivity Kn to the corresponding diagonal coefficient of [K] and to replace the 
corresponding coefficient in {R} by KnTn

* · This method effectively forces the nodal 
temperature to be equal to the prescribed value for sufficiently large Kn.
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5.3. Solution of Transient Heat Conduction[13]

The analysis of steady-state heat conduction problems involves the solution of a set of 
simultaneous equations given by Eqs. (5.21) with each term of T t set equal to zero and with 
Q and q* assumed to be independent of time. This may be accomplished, as for static stress · 
analysis, by Gaussian elimination. The analysis of transient heat conduction, however, involves 
the solution of Eqs. (5.21) as a set of simultaneous first order linear differential equations in time 
subject to certain initial conditions.

These equations may be solved by mode superposition, as for dynamic stress problems, by 
determining the eigenvalues and eigenvectors of the equation

K C {T} = {0}

Equation 5-23

A more usual approach is to numerically integrate the differential equations. One such method 
uses the assumption that temperatures at time t and t+ t are related by

{T} = {T} + (1 )
T

t
+

T

t

Equation 5-24

By writing Eqs. (5.21) for time t and t+ t, the derivatives of temperature can be eliminated and a 
set of equations for temperature at time t+ t can be obtained as

1

t
C + [K] {T} =

1

t
C + (1 )[K] (T) + (1 ){R} + {R}

Equation 5-25

Thus the problem is reduced to the repeated solution of a set of simultaneous equations. For 
constant .0.t the matrix on the left side of the equation is independent of time and need be 
reduced by Gaussian elimination only once. With given initial values of {T} at t=0 and with 
{R}t=0 at {R}t= t known, the set of equations may be solved for {T}t= t. The right side is then 
changed using the new values of {T}t= t and the values of {R}t= t and {R}t=2 t and the solution 
obtained for {T}t=2 t and so on.

In the program is taken as 1, in which case the method is known as the Euler method. The 
method is unconditionally stable if t is less than 2/ max. where max is the largest eigenvalue of 
Eq. (5.23).
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Chapter 6. The Element Library
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A number of elements for different uses are available in the program. These are discussed 
below.

6.1. TRUSS3D: Linear 3-D Truss/Spar

FIGURE 15
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Transformed Linear Stiffness Matrix:

k = T T

with

T =

X

L

Y

L

Z

L
0 0 0

0 0 0 0 0 0
0 0 0 0 0 0

0 0 0
X

L

Y

L

Z

L
0 0 0 0 0 0
0 0 0 0 0 0

and

X = X X

Y = Y Y

Z = Z Z

L = X + Y + Z

Stress:

= E
u u

L
T

= E
X

L
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L
 

Z
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u
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Transformed Thermal Loading:

P =

X

L
Y

L
Z

L
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L
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L
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L
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6.2. BEAM3D:Linear 3-D Elastic Beam

FIGURE 16

For symmetric beams the x axis coincides with the beam centroidal axis and the y and z axes are 
principal centroidal axes.  Node 3 lies in the principal x-y plane.  For unsymmetric beams with 
offset, the orientation of the element x, y, and z axes is determined by the location of two offset 
nodes and a third node.  The location of the element end nodal points with respect to the member 
end centroids is given in terms of member centroidal coordinate axes x', y', and z' defined such 
that the x' axis coincides with the member centroidal axis, the z' axis lies in the element x-z plane 
and is perpendicular to the x' axis, while the y' axis is perpendicular to both the x' and z' axes, the 
three forming a right-handed Cartesian coordinate system.  Shear factors, however, are those for 
the member principal axes.  Stiffness matrices are first calculated for member principal axes and 
are then transformed to account for the orientation of the various coordinate axes with respect to 
principal axes and for the offsets of the nodes from the centroids of the element end cross-
sections.  If Iy'y', Iz'z', and Iy'z' are, respectively, the moments of inertia of the cross-section about 
the y' and z' centroidal axes and the centroidal product of inertia, the principal moments of inertia 
are given by

I

I
=

1

2
(1 + cos )

1

2
(1 cos ) sin

1

2
(1 cos )

1

2
(1 + cos ) sin

I

I
I
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where

90° = tan
2I

I I
90°

Matrix Variational Function Shape Functions Integration
Linear 
Stiffness
[kB]

Eq. (2.14) for principal axes
E, G, v, A, I , I , J, k , k  

u = u 1
x

L
+ u

x

L

u =
1

1 +
1 + +

x

L
2

x

L
1

x

L
u

+
x

L
1

x

L
1 +

1

2
x

L
L

+
x

L
+ 3

x

L

2
x

L
u

x

L
1

x

L

1

2

+
x

L
L

u =
1

1 +
1 + +

x

L
2

x

L
1

x

L
u

+
x

L
1

x

L
1 +

1

2
x

L
L

+
x

L
+ 3

x

L

2
x

L
u

x

L
1

x

L

1

2

+
x

L
L

= 1
x

L
+

x

L

=
1

1 +
1

x

L
1 + 3

x

L
x

L
2 3

x

L

6
x

L
1

x

L

u u

L

=
1

1 +
1

x

L
1 + 3

x

L
x

L
2 3

x

L

6
x

L
1

x

L

u u

L

Exact, no 
integration 
points



THE ELEMENT LIBRARY

92

=
24(1 + v)I

k AL
                        =

24(1 + v)I

k AL

(x, y, z principal axes)

Geometric 
Stiffness
[kG]

1

2
P

u

x
+

u

x
dx

Px constant

u = 1
x

L
1 + 2

x

L
u +

x

L
L

+
x

L
3 2

x

L
u

1
x

L
L

u = 1
x

L
1 + 2

x

L
u +

x

L
L

+
x

L
3 2

x

L
u

1
x

L
L

(Shear Deformation Neglected)

Exact, no 
integration 
points

Mass
[m]

1

2
A u  u  u    

1 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 ?

0 0 0
I

A
0 0

0 0 0 0
I

A

0 0 0 0 0
I

A

u
u
u

dx

I = I + I

, A, I , I , I constant

u = 1
x

L
u +

x

L
u

u = same as for [kG]
u = same as for [kG]

= 1
x

L
+

x

L

= 1
x

L
1 3

x

L
x

L
2 3

x

L
x

L
1

x

L

u u

L

= 1
x

L
1 3

x

L
x

L
2 3

x

L
x

L
1

x

L

u u

L

(Shear Deformation Neglected)

Exact, no 
integration 
points

Pressure 
Loading p u + p u dx

uy, uz same as those for [kG]

Thermal 
Loading
p'T

E A T
u

x
I

T

h x

+ I
T

b x
dx

Ty and Tz = constant 
temperature differences in the y 
and z directions, respectively

ux, y, z same as for [kG]

T = T 1
x

L
+ T

x

L
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Stiffness and Mass Matrix Transformation

Matrix referred to Global Coordinates      = (T1 T2 T3 T4)
T (Matrix referred to principal axes) (T1

T2 T3 T4)

The matrix T1 is the transformation matrix from principal to member axes: 

T
( )

=

R 0 0 0
0 R 0 0
0 0 R 0
0 0 0 R

R( ) =
1 0 0
0 cos sin
0 sin cos

with as defined previously. If the symmetric beam option is used, T1 is set equal to the identity 
matrix I. Matrix T2 is the transformation matrix for translation from element ends to offset nodes 
in member coordinates:

T
( )

=
S 0
0 S

S
( )

=

1 0 0 0 DZ DY
0 1 0 DZ 0 DX
0 0 1 DY DX 0
0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1

For the symmetric beam option, T2 is taken as I.

Matrix T3 is the transformation matrix for rotation from member axes to element axes.

T =

R 0 0 0
0 R 0 0
0 0 R 0
0 0 0 R

Where the rotation matrix Rx'x can be determined from Figure 17 as

R =

L

L L

L

L L

L

L

L L L

L
0

L

L
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FIGURE 17
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where

x = DX2 DX1

y = DY2 DY1

z = DZ2 DZ1

L = L

L = L + y = L ( )

For the symmetric beam option, T3 is set equal to I.

The matrix T4 is the transformation matrix from element to global coordinates.

T
( )

=

R 0 0 0
0 R 0 0
0 0 R 0
0 0 0 R

where

R( ) =

n X n Y n Z
n X n Y n Z

n X n Y n Z

When the third point is used

n =
X X

L
,     n =

Y Y

L
,     n =

Z Z

L

n =
N

N
,    n =

N

N
,    n =

N

N

with

N = (Z Z )(Y Y ) (Y Y )(Z Z )

N = (X X )(Z Z ) (Z Z )(X X )

N = (Y Y )(X X ) (X X )(Y Y )

N = N + N + N
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n = n n n n

n = n n n n

n = n n n n

Here Xi, Yi, Zi are the global coordinates of the three nodes. The matrix is used for both 
symmetric and unsymmetrical beams.

Force Matrix Transformation:

f = (T  T  T  T )

Stress Calculation:

The stress is best determined in terms of forces at the member ends. These are given for 
principal axis coordinates as

P
P

P
M
M

M
P
P

P

M
M

M

= (T  T  T  T )

u
u
u

u
u
u

+ E

A T
0
0
0

I

b
T

I

h
T

A T
0
0
0

I

b
T

I

h
T

The axial stress is then determined as

= ( 1)
P

A

M y

I
+

M Z

I

To obtain the torsional stress, the twisting moments must be referred to the shear center 
for an unsymmetrical section. The end forces given above are then premultiplied by the 
transformation matrix.
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T =
S 0
0 S

with

S =

1 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0
0 DZS DYS 1 0 0

DZS 0 0 0 1 0
DYS 0 0 0 0 1

i.e., the forces referred to the shear center are given by

P  = T P

The torsional stress is then

=
(M )(CTOR)

J

Tapered Symmetrical Beams:

For a tapered doubly symmetrical beam, all matrices are calculated as for a doubly 
symmetrical uniform beam with the following equivalent properties:

A =
1

3
A + A A + A

I =
1

5
I + I I + I I + I I + I

I =
1

5
I + I I + I I + I I + I

J =
1

5
J + J J + J J + J J + J

For stress calculations, the actual stiffness at ends 1 and 2 are used.
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6.3. RBAR: 2-Node Rigid Bar[20]

FIGURE 18

Nodes 1 and 2 are connected by a rigid bar and are constrained to have rigid body relative 
displacements and the same rotation. The constraints in vector form are

=

and

u u =
1

2
+ × (r r )

where is the rotation vector, u the displacement vector, and r the radius vector. These 
constitute a set of six equations which are imposed via the penalty function method. The term

R =
1

2
E ( ) + F u u

1

2
+ (x x )

is used as a variational function. The resulting stiffness matrix is included in the structural 
stiffness matrix. The quantities Ei and Fi are large numbers of the order of lE l0. The single 
subscripts i, j , k indicate the components of the various vectors and Eijk is the permutation 
symbol which is equal to zero if two or more of the subscripts are equal, and

= = = +1, = = = 1
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6.4. SPRING: Spring Element

FIGURE 19

The element allows input of concentrated axial loads in the direction of the element axis and 
concentrated moments about the element axis which are proportional to the relative 
displacements of the nodes.

Matrix Variational Function Shape 
Functions

Integration

Linear 
Stiffness
[k'B]

1

2
{u u }

k 0 k 0
0 k 0 k

k 0 k 0
0 k 0 k

u

u

None None
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6.5. SHELL3T: Triangular Thick Shell[24,25,26]

FIGURE 20

Material is isotropic.

Matrix Variational Function Shop Functions Integration
Linear 
Stiffness

Eqs. (2.19) to (2.21) u = u L + u L + u L

+
1

2
y L [L (

)
L ( )]

u = u L + u L + u L

+
1

2
[x L L (

)
+ (x x )L L (

)
x L L ( )]

u = u L + u L + u L *

= L + L + L

= L + L + L

*  This is nominally the assumed 
displacement function. Derivation is 

Exact for 
inplane 
energy; 
numerical 
with one 
integration 
point for 
bending 
energy
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modified by dividing displacements into 
bending and shear components and 
deleting bending portions of shear 
displacements.

(L1, L2, L3 area coordinates for triangle.)

Geometric 
Stiffness
[k'G]

1

2

u

x
  

u

y

N N

N N

u

x
u

y

dx dy

u = u L + u L + u L Numerical, 1 
Gauss point

Mass
[m'] 1

2
u  u  u   

h 0 0 0 0
0 h 0 0 0
0 0 h 0 0

0 0 0
1

12
h 0

0 0 0 0
1

12
h

u
u
u dx dy

Same as for Linear Stiffness Numerical, 1 
Gauss point

Heat Transfer

[k'T]

[c'T]

{rQ}

h

2

T

x
  

T

y

k k

k k

T

x
T

y

dx dy

h cT
T

t
 dx dy

h QT dx dy

T = T L + T L + T L Numerical

1 point

3 points

1 point
Pressure 
Loading p u  dx dy

Same as for Linear Stiffness 1 point

Thermal 
Loading E

u

x
+

u

y
T

+
h

12 x y
T  dx dy

Same as for Linear Stiffness

T = T L + T L + T L

T constant

1 point

Gravitational 
Loading

g u + g u + g u  h dx dy
Same as for Linear Stiffness 1 point
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Transformation Matrix for Stiffness and Mass

k = T

where

T( ) =

R 0 0 0 0 0
0 R 0 0 0 0
0 0 R 0 0 0
0 0 0 R 0 0
0 0 0 0 R 0
0 0 0 0 0 R

R is same as rotation matrix  R used in BEAM3D

Load Transformation

f = T

No transformation matrix for heat transfer
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6.6. SHELL3: Triangular Thin Shell

FIGURE 21

Material is isotropic.

Matrix Variational Function Shape Functions Integration
Linear 
Stiffness 1

2

u

x

u

y

u

y
+

u

x

K vK 0
vK K 0

0 0
1 v

2
K

u

y
u

x
u

y
+

u

x

dx dy

+
1

2 x y y x

D vD 0
vD D 0

0 0
1 v

2
D

x

y

y x

dx dy

ux, uy same as for SHELL3T

uz is unspecified in interior along sides

u = 1
s

1 + 2
s

u +
s u

s

+
s

3 2
s

u

+ 1
s u

s

i = end 1, j = end 2, = length of a side, 
s = distance along side from node I to 
node j

1 point 
integration
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= L 2L 1 + L 2L

1 + L 2L

1

+ 4L L

+ 4L L

+ 4L L

with yi, zi (i = 4, 5, 6) the rotations at 
the side midpoints. These are 
eliminated by imposing the Kirchoff 
conditions

u

x
+ = 0

u

y
+ = 0

at the corners of the triangles, the 
conditions

+
u

s
= 0

at the triangle midsides, with s the 
rotation component in the direction of 
the side, and by imposing a linear 
variation of the normal rotation 
component along the sides, i.e., at the 
side midpoints

=
1

2
+

Geometric 
Stiffness 1

2

u

x
 

u

y
 

u

y
 

u

x
   

N N 0 0 0 0

N 0 0 0 0

N N 0 0

N 0 0

N N

N

u

x
u

y
u

y
u

x

dx dy

Same Shape Functions as for Linear 
Stiffness

Exact

All other variational functions are identical 
with those for SHELL3T

Same Shape Functions as for Linear 
Stiffness

Exact, no 
integration 
points
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Transformation Matrix

T =

R 0 0 0 0 0
0 R 0 0 0 0
0 0 R 0 0 0
0 0 0 R 0 0
0 0 0 0 R 0
0 0 0 0 0 R

R is identical with 3rd node transformation for BEAM3D.
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Notation Table
A area of a cross-section of a beam

A thermal expansion coefficient matrices (Eq. 1.37)

A beam thermal expansion matrix

Bi matrix of strain function of position within the ith finite element

C, C' symmetric elastic coefficient matrices defining stress in terms of strain, referred to
different coordinate systems (Eq. 1.36, 1.40a)

Ci elastic constant matrix for ith finite element

Ctor coefficient for maximum shear stress of a section in torsion

C beam elastic stiffness matrix

C flat plate elastic stiffness matrix

C elastic coefficient matrix for a conical shell

c specific heat

c shifting parameter for frequency

D isotropic plate bending stiffness

Di matrix of displacement functions of position within the ith finite element

Ds, D  meridional and circumferential bending stiffnesses for an orthotropic conical  

shell 

E, E' square symmetric strain matrix of nine strain components at a point referred to 
different coordinate systems (Eqs 1.23, 1.26)

E Young’s modulus of isotropic material

i strain matrix for the ith finite element

Eii Young’s modulus of orthotropic material with coincident material and coordinate 
axes relating direct strain in I direction due to direct stress in i direction

Es, E Young’s modulus in shell meridional and circumferential directions

e beam strain matrix (Eq. 2.12b)
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e flat plate strain matrix (Eq. 2.20)

e strain matrix for a conical shell

F, F' symmetric elastic coefficient matrices defining strain in terms of stress, referred to 
different coordinate systems (Eqs. 1.39, 1.40b)

F assembled body force matrix

Fi body force matrix for ith finite element

fi components of body force vector at a point acting in i direction

G shear modulus of isotropic material G =
( )

Gij shear modulus of orthotropic material with coincident material at coordinate axes 
giving shearing strain between lines in the I and j directions due to shearing stress 
component ij

h plate shell thickness; convective heat transfer or film coefficient

I beam moment of inertia about an axis normal to plane of bending

Iyy, Izz, Iyz beam cross-sectional moments and product of inertia

I1, I2, I3 stress invariants at a point (Eq. 1.20)

I , I principal moments of inertia

J beam cross-sectional torsion constant; Jacobian

J1, J2, J3 strain invariants (Eq. 1.34)

K assembled stiffness matrix

K isotropic plate stretching stiffness K =

KB structural stiffness matrix

KG geometric stiffness matrix

KS, K meridional and circumferential stretching stiffnesses for an orthotropic conical shell

k thermal conductivity matrix

ki stiffness matrix for the ith finite element
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kx, ky, kz thermal conductivities in Cartesian coordinate directions

k , k shear strain energy correction coefficients for non-uniform distribution of shearing 

stress

M assembled mass matrix

Mi matrix relating nodal variables of ith element to the assembled matrix of all nodal 
variables

N rotation matrix (square matrix of cosines of angles between coordinate axes in x and 
x' coordinate systems

n outwardly directed normal to a plane passing through a point

ni outwardly directed normal to principal plane i at a point

Pk transformation matrix used in Jacobi method (Eq. 3.19)

Px, Vy, Vz force components acting on a beam ends (Fig. 11)

p beam end force and moment matrix (Eq. 2.12a)

Q internally generated heat flux

q nodal variable matrix

qi matrix of nodal variables for ith finite element

qx, qy, qz body heat flux in Cartesian coordinate directions

r, , z coordinates of cylindrical coordinate system 

S, S' square symmetric stress matrices of nine components of stress vectors acting on 
different sets of three perpendicular planes about a point

S  square symmetric matrices of nine components of stress vectors acting on 

different sets of three perpendicular planes about a point 

s, n axes of conical orthotropy (Fig. 10)

s, , z meridional, circumferential, and normal coordinates for a conical shell 

T temperature 

T, My, Mz moment components acting on beam ends (Fig. 11) 

Tk kth transformation matrix for subspace iteration (Eq. 3.27a) 
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Tn nodal temperature matrix for finite element 

T  '

T transformation matrix relating stress matrices and ' (Eq. 1.14)

T fluid temperature

t time

tn stress vector on a plane passing through a point and having the normal vector n

U strain energy (Eq. 2.5)

u, v, w flat plate reference plane displacements

u(s), w(s) axisymmetric meridional and normal reference surface displacements for a conical 
shell

ui displacement matrix for ith finite element of deformable body

us, u , uz conical shell displacements in direction of coordinate axes

ux, uy, uz deformation components in the direction of the Cartesian coordinate axes

ux0 axial displacement of centroidal axes of an initially straight beam

u , u , u displacements of reference surface of plate or shell

V volume of deformable body; kinetic energy (Eq. 3.3)

Vi volume of the ith finite element

Vk transformed eigenvector matrix for kth round of subspace iteration (Eq. 3.27e)

Wi numerical integration weighting constant for sampling point i in region

W warping of beam cross-section

x, x' matrices of Cartesian coordinates of a point in space referred to different coordinate 
axes

x, y, z coordinates of Cartesian coordinate system

thermal expansion coefficients for isotropic material

terms in ith and jth rows and columns of Pk

ij thermal expansion coefficients for direct (i = j) and shearing (i 
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0 displacement gradient matrix

T difference between actual temperature at a point and uniform temperature at which 
body is stress-free

ij Kronecker delta ( = 1 if i = j, = 0 if i j)

, ' column strain matrix of six independent components of E, E' (Eq. 1.27. 1.29)

B strain matrix for conical shells used in the determination of the geometric  

stiffness matrix 

i principal strains 

ij measure of change of length of a line originally in the i direction if i=j, a measure  

of the change of angle between two originally perpendicular lines in the i and j 

directions if i j 

linear strain matrix for conical shells

angle between coordinate systems having a common axis (Fig. 5); angle between 
radial axis and s axis of conical orthotropy in a body of revolution (Fig. 10)

diagonal matrix of eigenvalues

initial stress distribution proportionality factor

k diagonal eigenvalue matrix for kth round of subspace iteration (Eq. 3.27d)

v Poisson’s ratio of isotropic material

vij Poisson’s ratio; ratio of strain in the i direction and strain in the j direction, due to 
stress in the j direction

vs Poisson’s ratio for orthotropic material

non-dimensional coordinates of a point in a regular element

potential energy of elastic deformable body (Eq. 2.5)

B potential energy for buckling problems

i potential energy of ith finite element

mass of body per unit volume

column stress matrix of six independent components of stress matrices S,S'
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i stress matrix ith finite element

i principal stresses at a point

ij stress component in j direction of stress vector acting on plane perpendicular to the I 
direction

M von Mises stress (Eq. 1.21a)

initial stress distribution matrix for buckling problems

oct shear stress on a plane making equal angles with respect to the principal axes

matrix of eigenvectors arranged by columns

eigenvector matrix for kth round of subspace iteration (Eq. 3.27e)

x y z small rotation components in the direction of the Cartesian coordinate axes

vibration frequency

x
x = represents combination of two equations where each equation is defined by the 

corresponding terms on the same level after the bracket symbol
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