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INTRODUCTION

An investigator seeking the solution of the partial differential equations which govern the
behavior of deformable bodies soon discovers that few exact analytical descriptions are available
and that those that are available are very much limited in applicability. Solutions are generally
obtainable only for regions having certain regular geometric shapes (circles, rectangles, spheres,
etc.) and then only for restricted boundary conditions!™! The need for results for more complex
structures leads to the use of approximate methods of solution.

A number of different approximate methods have been devised since the beginning of the
twentieth century. One of the earliest ¥ replaces the goal of obtaining a continuously varying
solution distribution by that of obtaining values at a finite number of discrete grid or nodal
points. The differential equations are replaced by finite difference equations, which, together
with appropriate boundary conditions expressed in difference form, yield a set of simultaneous
linear equations for the nodal values. An alternative approximate method, the Rayleigh-Ritz
method P! introduced almost at the same time, seeks to expand the solution of the differential
equations in a linear series of known functions. The coefficients multiplying these functions are
obtained by requiring the satisfaction of the equivalent variational formulation of the problem
and are, again, the solution of a set of simultaneous linear equations. These methods have
extended the range of problems that may be considered but have been found to be limited by the
extreme difficulty involved in applying them to even more complex shapes. The need to analyze
the complicated swept-wing and delta-wing structures of high speed aircraft was the impetus
which led to the development of the finite element method.

It is common in the traditional analysis of complicated building structures to divide them
into pieces whose behavior under general states of deformation or loading is more readily
available. The pieces are then reattached subject to conditions of equilibrium or compatibility.
The slope- deflection method *! in statically indeterminate rigid-frame analysis is an example of
such an approach. Attempts at rational analysis of wing-structures initially took the same
physically motivated path with, however, the improvements of matrix formulations and the use
of electronic digital computers. Methods based on Castigliano's theorems were devised for the
calculation of flexibility matrices for obtaining deflections from forces and stiffness matrices for
the determination of forces from displacements. The former matrices were used in "force"
methods of analysis while the latter were used in "displacement" methods.

An explosion in the development of the finite element methods occurred in the years
subsequent to 1960 when it was realized that the method, whether based on forces or
displacements, could be interpreted as an application of the Rayleigh-Ritz method. This was first
suggested for two dimensional continua by R. Courant,'® who proposed the division of a domain
into triangular regions with the desired functions continuous over the entire domain replaced by
piecewise continuous approximations within the triangles. The use of flexibility matrices was
found to imply the implementation of the principle of minimum complementary energy while
stiffness matrices imply the principle of minimum potential energy. The use of this approach
permits the investigation of such topics as the continuity requirements for the piecewise
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INTRODUCTION

approximations and convergence rates obtained with increasing numbers of elements or with
increasing complexity of functional representation. It also allows stiffness or flexibility matrices
to be calculated from a conceptually simpler mathematical viewpoint, while indicating the
possibility of using variational principles in which both forces and displacements are varied to
produce "hybrid" elements. Despite the possible advantage of hybrid elements for some
problems, solutions based upon the principle of minimum potential energy and displacement
approximations have become dominant for the simple reason that the associated computer
software is more universally applicable and requires the least interaction between machine and
operator.

In recent years the finite element method has been applied to mechanics problems other
than those of structural analysis, i.e., fluid flow and thermal analysis. It has been extended to
permit the solution of nonlinear as well as linear problems, those of large deformation geometric
nonlinearity and/or material property nonlinearity, for example. It is hard to think of any field in
which finite elements are not extensively used to provide answers to problems which would have
been unsolvable only a few years ago.
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FUNDAMENTAL RELATIONS FOR LINEARLY ELASTIC SOLIDS

Chapter 1. Fundamental Relations
for Linearly Elastic Solids
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FUNDAMENTAL RELATIONS FOR LINEARLY ELASTIC SOLIDS

Problems in solid mechanics deal with states of stress, strain and displacement in deformable
solids. The basic relationships which govern these states and which are the basis for finite
element applications are summarized below. The discussion is limited to states of small
displacements and rotations and rotations to linear elastic materials. A more complete exposition
may be found in a number of texts. !

1.1. Stresses

1.1.1.Stress Matrix

External loading on the surface of a deformable body is assumed to be transmitted into
the interior by the pressure of one part of the body on an adjacent portion. If such a body is
divided by a plane having a given orientation in space (Fig. | a) and a region about a point P on
the cut surface is considered, the pressure forces on this region may be resolved into a resultant
moment vector AM and a resultant force vector AP (Fig. 1 b). As the region considered is
decreased in size about the point, these resultant vectors decrease in magnitude and their
directions will vary. In the limit it is assumed that the ratio of the force vector and the area upon
which it acts, the stress vector, approaches a limit t (Fig. Ic), while the ratio of the moment vector
and the area, the couple stress vector, vanishes, i.e.

AP
AToRA

=+l

Equation 1-1a
li —AM =0
v AA

Equation 1-1b
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FUNDAMENTAL RELATIONS FOR LINEARLY ELASTIC SOLIDS

a. Plane dividing Body into Two Parts b. Resultant Force and Moment Vectors
on region of area AA about O in plane

—
t

c. Limiting stress vector
at point O in plane

FIGURE 1 THE STRESS VECTOR AT A POINT

The stress vector t at a point in the body is a function of the orientation of the plane on
which it acts and is related to the components of the stress vectors on three perpendicular planes
passing through the point. The set of nine components, called the stress matrix, defines the state
of stress at a point. In Cartesian coordinates these nine components are

Oxx Oxy Oxz
S=|0yx Oyy Oyz
Ozx Ozy Ogzz

Equation 1-2
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FUNDAMENTAL RELATIONS FOR LINEARLY ELASTIC SOLIDS

The first subscript denotes the direction of the outwardly directed normal to the plane on
which the stress component acts while the second subscript denotes the direction of the s tress
component. These are shown in Fig. 2 acting on faces for which the outwardly directed normal is
in the positive direction of the coordinate axis. On the remaining faces for which the outwardly
directed normal is in the opposite direction, the stress component directions are reversed.

Conditions of moment equilibrium of forces about a point require symmetry of the stress matrix,
1e.

Oxy = Oyyx
GyZ = Gzy
Ozx = Oxz

Equation 1-3

FIGURE 2 STRESS VECTOR COMPONENTS ON THREE
PERPENDICULAR PLANES ABOUT POINT 0
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FUNDAMENTAL RELATIONS FOR LINEARLY ELASTIC SOLIDS

If the outwardly directed normal to the plane through point O (Fig. 3) is

Ny
n= Ily
Ny

Equation 1-4

the stress vector on that plane is given by
ty OxxNy + OyxNy + 0,40,
t, = {ty} = STn = { oxyny + Oyyny + 0zy0,
t, OxzNx + OyzNly + 04,1,

Equation 1-5

FIGURE 3 STRESS VECTOR IN PLANE WITH NORMAL VECTOR N

1.1.2.Rotated Coordinate Systems

The stress matrix has been defined with respect to a given coordinate system X, y, z. If a
second set of Cartesian coordinates x', y', z' having the same origin but different orientation is
introduced, the two systems of coordinates are related by (Fig. 4)

x' = Nx

Equation 1-6

“f)

Equation 1-7

with

—
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FUNDAMENTAL RELATIONS FOR LINEARLY ELASTIC SOLIDS

FIGURE 4 COMPONENT OF A VECTOR IN ROTATED CARTESIAN
COORDINATE SYSTEMS

and

N =

Ny Nxry  Nxrz
ny’X ny’y ny’Z

Nz;x  Nziy Nz
Equation 1-8

where n;j is the cosine of the angle between the primed i'-axis and the unprimed j-axis. The
relationship

N~ =NT
Equation 1-9

holds for this matrix. The stress matrix with respect to the second set of Cartesian axes is
expressed by

S’ = NSNT

Equation 1-10

<
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FUNDAMENTAL RELATIONS FOR LINEARLY ELASTIC SOLIDS

It is sometimes more convenient to speak of the six independent stress components which
comprise the stress matrix

Equation 1-11

The transformation relation under a rotation of the coordinate system given by Eq. (1.6 ) then
becomes

o' =Ts0

Equation 1-12

with
Ox'x
Oy'y
o = O3z'z
Gx'y
Gy'z
02/
Equation 1-13
and
-2 2 2
g, Ny g, 2ng,nyry 2nyronyr, 2n,,nyry
2 2 2
ngr ngrg ng, 2ngyngry 2ngyongr, 2ng,ngr,
2 2 2
T, =| Mux ng, n, 2n,,n,r, 2n,yn,r, 2n,,n,ry
Ny Nry NyroNorg NyrpNgr,  NerNery + NyroNyry  NyroNor, + N Ny Ny Nor, + N Nyr,
NyreNyry NyroNyre NNy, NereNyrg + NyroNyry  NyreNer, + Ny Ny DyrNyry + ng,n,r,
—nZ’XnX’X NNy nZ’ZnX’Z nZ’XnX,y + nZ,ynX’X rlZ’ynX’Z + l’1Z’ZnX’ n,s, Ny + rlZ’XnX’Z—

Zy Xy y z'z2y X
Equation 1-14

If the coordinate axes rotate through an angle 6 about a coordinate axis, say the z-axis, (Fig. 5) the matrix N
becomes

cosO sinB O
N =|—sin0 cos® 0
0 0 1

Equation 1-15
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FUNDAMENTAL RELATIONS FOR LINEARLY ELASTIC SOLIDS

{
= |
\,’/_O\ef’ e
le— x —>|

FIGURE 5 COORDINATE SYSTEMS ROTATED ABOUT A COMMON

AXIS
and T, is given by
cos?0 sin?0 0  2sinBcosO 0 0
sin?0 cos’0 0 —2sinBcosO 0 0
| o 0 1 0 0 0
% |-sinBcos® sinBcos® O cos?(—sin?@) 0 0
0 0 0 0 cosb —sin0
0 0 0 0 sin® cosO
Equation 1-16
pr AR 13
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FUNDAMENTAL RELATIONS FOR LINEARLY ELASTIC SOLIDS

1.1.3.Principal Stresses

For certain coordinate axis rotations the stress matrix becomes diagonal so that shear stresses
vanish. The stress vectors on the three faces perpendicular to the coordinate axes are normal to
the surface on which they act (Fig. 6).

O3

0o

FIGURE 6 PRINCIPAL STRESS COMPONENTS

The three diagonal stress components o; are called principal stresses and their corresponding
directions are called the principal directions. They are given by the solution of the sets of
homogeneous equations

[ST - 6;lln; = 0 i=1,23
Equation 1-17

where n; is the vector defining the direction of the principal stress o;. Thus the three values of the
principal stresses are the solution of the determinantal equation

det|ST —o;I| = 0

Equation 1-18

—5
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FUNDAMENTAL RELATIONS FOR LINEARLY ELASTIC SOLIDS

or by the cubic equation
o} — Lo+ 1,0, —13=0
Equation 1-19

where the coefficients are stress invariants independent of the chosen coordinate system and are
defied by

[ = Oyx + Oyy + 04, =01+ 0, + 03
Equation 1-20 a
I; = 0xxOyy + Oyy0z; + 05,055 — OxyOyx — Oyz0zy — 040y, = 0103 + 0,03 + 030,
Equation 1-20 b
I; = det|S| = 0,0,03
Equation 1-20 ¢

For an isotropic material, a measure of stress intensity required for the material to yield
and become plastic is the von Mises stress given by

1
Om = \/E [(GXX - ny)z + (ogy — O'ZZ)Z + (042 — 0xx)? + 6(0%y + 0%, + G%X)]

Equation 1-21 a

This stress is related to the octahedral shearing stress, the shear stress on a plane making equal
angles with respect to the principal axes, by

oM = \/groct

Equation 21-1 b

=
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FUNDAMENTAL RELATIONS FOR LINEARLY ELASTIC SOLIDS

1.1.4.Equations of Equilibrium

The six stress components are not arbitrary but must satisfy the force equilibrium equations
(Fig. 7)

2
.
X
. +aﬁ dz
0027 Zy ¥
Gzz + e— d’Z
vz
i ny*?xdy
' 87
: A . 6] +.a_-£}' d}r
s, L 302x s W o
XE z o l-» Oyz +TyE dy
A 1
; ¥0xz
- Oyz+
G}'Z: h)a
i’ R [} %y +————}_;jx d_‘x
X X 2 G ) X
dz J’t : W ’.- __________________________ + G xdx
/" * '!f' G}'x x Ux
/ UXZ,"
” <----pn
xy ", ZX ’:": dy
vl -
|
- Je
dx \
|:";ZZ
FIGURE 7
16 2
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FUNDAMENTAL RELATIONS FOR LINEARLY ELASTIC SOLIDS

00yx 00yy 00,4
+ + +f,=0
doy ~ doy, do, *

Equation 1-22 a

do do do
LAl o A 3’

+f,=0
doy  doy 0o, 7
Equation 1-22 b
do do do
L —Zif,=0

doy  doy  doy,
Equation 1-22 ¢

Where f, f, fx are the components of the body force vector (force per unit volume) f.

1.2. Strains
1.2.1.Strain Matrix

The deformation state at a point in a deformed body is defined by the strain matrix

1 1
Exx E Exy E Exz
gt 1
“2%x &y e
1 1

E €z2x 5 Ezy €22
Equation 1-23

in which the diagonal strain components are a measure of the relative change of length of lines
originally in the directions of the coordinate axes while the off-diagonal components are
symmetric and are a measure of the change of angle between two lines originally in the direction
of the coordinate axes (Fig. 8). For small strains and rotations, the relationships between the
strain components and the components of the displacement vector

5
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FUNDAMENTAL RELATIONS FOR LINEARLY ELASTIC SOLIDS

S T T T T T e

// ﬂ‘

< dx >/

<—R—>
\

a. Undeformed Element

y)

Al +E%

b. Deformed Element

FIGURE 8 INTERPRETATION OF A SMALL STRAIN COMPONENTS

18 P4

LT DASSAULT The TOEXPERIENCE compand

,D_:i SUSTEMES



FUNDAMENTAL RELATIONS FOR LINEARLY ELASTIC SOLIDS

arc

8XX

uX
u= uy
uZ

Equation 1-24

du
Eyy O_yy YA
du N Oduy
€ — JR———
T, g,
v =
Yy~ 9, o,
duy, Odu,

Equation 1-25

1.2.2.Rotated Coordinate Axes

Under a change of Cartesian coordinate systems at the point, the strain matrix has a
transformation similar to that of the stress matrix, i.e.

E’ = NENT

Equation 1-26

In terms of the independent strain component matrix

Equation 1-27

=
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FUNDAMENTAL RELATIONS FOR LINEARLY ELASTIC SOLIDS

the transformation becomes

Equation 1-28

with

Equation 1-29

and

r 2 2 2

E'x!
Ey'y’
€7
Exlyl

Sylzl

Y

Ny/x Ny/y Ny/z Ny xNyry

2 2 2
Oyrx Oyry Nyrz OyrxNyry

2 2 2
T. = Nz Nzry Nz NgxNgry
€

| 2n,,4Nyx  2Dg,yN

ZIy X1y anlznxfz nZ’Xn

Xy

Equation 1-30

T, is related to Ts by

T, = (Tg)_l

If the rotation is about a coordinate axis, say the z axis,

cos?0 sin’0 0

sin?0 cos’0 0

0 0 1

€ —sinBcosB sinBcosO® 0
0 0 0

0 0 0

Equation 1-31

20y, Ny 2NNy 204,04, DyyNyy + Ny Ny
2nylxnzlx 2nylynzry Znyrznyz Ny Nypy + NyyNypy
+ n,,,n

zy

Ny,yNy/z
Nyry Ny

Nz/yNz/z

nX’ZnX’X
nylznylx

rlZ’ZnZ’X

Ny,yNyy + NNy NypNyy + Ny Ny,
Ny, Nyyy + NyypNyy NyypNyy + Ny,
nZ’ynX’Z + nZ’ZnX’y nZ’Zny’X + nZ’XnX’Z—

2sinBcosH 0
—2sinBcosO 0
0 0
cos?(—sin?0) 0
0 cos6
0 sin®

(=i

0
—sin6
cosO

20 o R
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FUNDAMENTAL RELATIONS FOR LINEARLY ELASTIC SOLIDS

1.2.3.Principal Strains

As in the case of stress, the strain matrix becomes diagonal for a particular set of axes, the
principal strain directions, which are the solution of homogeneous equation

[ET—glln;=0 i=1,2,3
Equation 1-32
The three principal strains are given by the solution of the cubic equation
& —Jief +)261=)3=0
Equation 1-33
in which the invariants coefficients are defined as
i =t ey te,; =6+ e

Equation 1-34 a

1
J2 = &xxEyy + EyyErz + €178k — 1 (sxysyx + &yz8 + SZXEXZ) = £.&; + €583 + €38

Equation 1-34 b
J3 = det|E| = &;&,¢83

Equation 1-34 ¢

1.3. Stress-Strain Relations

1.3.1.Anisotropic Material

The relationship between the components of stress and strain is the generalized Hooke’s
law given by the linear equation

o = C(e — AAT)
Equation 1-35
in which C is the symmetric elastic-coefficient matrix

(Ci1 Gz Gz Cip Cis Gy

C22 C23 C24— C25 C26
C33 C34- C35 C36

C =
Caa Cus Cye
C55 C56
_Sym C66-
Equation 1-36
2 21
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FUNDAMENTAL RELATIONS FOR LINEARLY ELASTIC SOLIDS

A is the thermal expansion coefficient matrix

=
I

Equation 1-37

and AT is the difference between the actual temperature and the uniform temperature at which
the body is stress free. The relation may also be expressed by the inverted form

€ = Fo + AAT
Equation 1-38
in which
F=cCc!
Equation 1-39
Under a rigid body of rotation of the coordinate system the matrix C transforms as
C' = T4CTS
Equation 1-40a
while F transforms as
F = T,FTS

Equation 1-40b

22 /_.’ ]
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FUNDAMENTAL RELATIONS FOR LINEARLY ELASTIC SOLIDS

For an orthotropic material, one with three preferred material axes and with the material
axes coinciding with the coordinate axes, the matrices F and A are defined by

1 \% % ]
- X _X 9 0 0
Exx Eyy Ez,
% 1 %
¥ - _X2 0 0
Exx Eyy E;,
\% \% 1
=y 0 0 0
F= Exx Eyy Ez,
B 1
0 0 0 — 0 0
Gyy
0 0 0 0 ! 0
Gyx
0 0 0 0 0 !
Gy
Equation 1-41
in which
Sy Ty VYV  Tyz_ Vay
Eyy Exx E;z  Exx Ez, Eyy
Equation 1-42
and
aXX
Qyy
= _ ) Qzz
A=10
0
0

Equation 1-43

Then the elastic constant matrix C may be written as

[ (1 - VyZVZX)SXX (ny - VXZVZy)SXX (sz - nyVyz)Sxx 0 0]
(Vyx - Vyzvzx)syy 1- szvxz)syy (Vyz - Vyxsz)Syy 0 0
C = (VZX - szvyx)szz (sz - szvxy)szz (1 - nyvyx)szz 0 0 0
0 0 0 Gy 0 0
0 0 0 0 Gy, O
0 0 0 0 0 Gy

Equation 1-44

=
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FUNDAMENTAL RELATIONS FOR LINEARLY ELASTIC SOLIDS

with

— — -1
E - E - - (1 — VxyVzx — VyzVzy — VxyVyx — VxyVyzVzx — VyXVXZVZy)
vy 7z

Equation 1-45

If only the terms above the principal diagonal of F are defined, the inverted matrix may be

written as
[ E Eyy
Sxx (1 - V32/x E_XX> Sxx (ny + VxzVyz E_) Sxxsz + VxuVyz 0 0
ZZ ZZ
E E
Sxx (1 —vZ, ﬁ) SxxVyz + VxyVaz—o 0 0
EZZ Eyy
C= Exx
S ——
2 (1 v, Eyy) 0 0 O
Gy O
Gy,
sym
Equation 1-46
and

-1
Sxx Syy Szz < 2 Exx 2 Eyy 2 Exx xx>
- 1-v" =——Vv" = —Vv" == — 2V Vy, Vg =

Eyy E,, Eyy Xy VyzVxz E,,

Equation 1-47

If the material is isotropic so that

Equation 1-48 a
Vxy = Vyx = Vyz = Vzy = Vzx = Vxz =V
Equation 1-48 b

E
ny:Gyzszszzm
Equation 1-48 ¢
Ogx = Olyy = Oy = Q

Equation 1-48 d
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FUNDAMENTAL RELATIONS FOR LINEARLY ELASTIC SOLIDS

the elastic coefficient and material property matrices become

es I =Y
<

sym

Equation 1-49

(1-v)E vE vE
A+v@-2v)y 1+vy1-2v) A+wv)(1-2v)
(1-v)E vE
A4+v(A-2v) (1+v)(1-2v)
(1-v)E
C= aA+wva-2v)

2(1-2v)

2(1—-2v)

sym 2(1 - 2v)]

Equation 1-50

and

Ea
1-2v
Ea
1-2v
CA=< Ea ;
1-2v
0
0
0

Equation 1-51
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FUNDAMENTAL RELATIONS FOR LINEARLY ELASTIC SOLIDS

1.3.2.Plane Strain

For a body in a state of plain strain, the displacements, and therefore the loading are
assumed to be independent of one coordinate, say the z-coordinate, so that

€z = Cyz = Ex = 0
Equation 1-52

Then for an orthotropic material with one of the material axes coinciding with the longitudinal
axis

Oxz = Oy; =0
Equation 1-53
and
Ozz = Vxz0xx + Vyzo-yy - aZZEZZAT
Equation 1-54

The remaining stresses are given in the material coordinate system by

E E
Sy (1 —vZ, yy) S (V + vy, v yy) 0
0-XX ye EZZ i w xetye EZZ EXX axx + szazz
Oyy( = S (1 _ 2 @) o 115 = 1%y T VyzQzz (AT
Oyz yy WE,, Exx 0
sym Gyy
Equation 1-55

If the angle between the X', y' coordinate axes and the x, y material axes are denoted by 0
(positive in the counterclockwise direction), then the stressOstrain relations become

!
Ox'x' Cil Ciz C13 Ex'x’ AX'X’
_ ’ ’ !
Oy'y' ¢ = Caz Co3[{&'y't —{Ayry ¢ AT
07’2 sym CZ’%3 EZ’Z, A’/ ’
z'z

Equation 1-56

with
Ch} ( 2 Eyy) {cos 0 ( 2 Ex ){sm 0
/ =S 1—-v S 1—-v
Cz22 e YZE sin* X2 E,,/ lcos* O
Ey
[stx <ny VxzVyz E, ) + 4Gyy | sin 20 cos?0
Equation 1-57 a
26 2
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FUNDAMENTAL RELATIONS FOR LINEARLY ELASTIC SOLIDS

Cha =[S (1= v2,22) + 5, (1= v2, ) — 25 B9\ _ a6 8cos?0 +G
33 = |9xx VyzE XX VyzE XX ny+szVyzE Xy sin® 0 cos® 0 + Xy
72 72 72
Equation 1-57 b

Ey E E
Ciz = [S (1 — Vi, 5 ) +S (1 - v, E—XX) — 254 (ny + Vs Vyy E_yy) — 4Gyy [ sin® B cos? 6
7ZZ

Y44 Y44

E
vy
+ Sgx (ny + VyzVys B )
ZZ

Equation 1-57 ¢

Cig} {[ Eyy Eyy cos? @
=[S (V + Vy, V. —) ( V2—>+2G ]{
Cé3 xx | Vxy xz'yz g yZ E, x| sin2 @
+[S ( EXX) s ( + Ey-") 2G ] SIn° 0 16 cos 6
V—— V. Vi, Vyo = | — ——-—SINn U CoS
yy XZ E, xx | Vxy xzVyz E,, Y| 1 cos2 0
Equation 1-57 d
and
’ E vy Eyy 2
L g A B e T + (ayy + Vyzazz) + | Viy + ViaVys o cos“ 0
77 ZZ
Eyy) .2 Exx
+ (e + Vyp@y) | Vi + ViV £ )sin ] 1—vi,— 5 = | (ayy + vy,0,,) sin? 0
77 77
Equation 1-58 a
, Eyy Eyy -,
Al = Sy} | CaVaz Oz | 1= Vi = =)t (ayy + Vyz0yz) + | Vay + VigVyr = = ||sin 0
ZZ ZZ
Eyy 5 5 Eyx
+ (O + Vy204) | Vay + VizVys T )cos 8¢Sy | 1—vE,— : =) (ayy + vy 0,) cos? 0
ZZ ZZ
Equation 1-58 b
, Eyy
e R (ayy + vy 0z7)
ZZ
Eyy
+ Syx | Vxy t VxzVyz 5 E [ocXX Ayy + (VXZ - Vyz)O(ZZ]
ZZ
2 EXX .
— Syx | 1 — v — | (0xx + Vyp0z,) { Sin B cos O
EZZ
Equation 1-58 ¢
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FUNDAMENTAL RELATIONS FOR LINEARLY ELASTIC SOLIDS

For an isotropic material, the stress-strain relationship in any coordinate system is given by

(1-v)E VvE
5 1+v)Q—-2v) A+v)(1-2v) ¢
= (1 —v)E | 1 EaAT
vy (= A+va-2z9 Eyy (1) T+v(1=2v)
Ozz E €2z
| om Y.

Equation 1-59

1.3.3.Plane Stress

A body in state of plane stress is characterized by the relations
Oxz = Oyz = Ozz = 0
Equation 1-60

which are generally satisfied only approximately. Then for an orthotropic material with
coincident material and body z-coordinate axes, the pertinent strains in the material coordinate
system are given in terms of the remaining stress components by

- Ei - ;ﬂ 0
Exx i 1yy Oxx Oxx
Syy = E—yy 0 ny + Uyy AT
Exy 1 | \Ozz 0
sym —
Gyy |
Equation 1-61
which can be inverted to yield
Exx VXyEXX 0
Oxx 1—vz Exx 1 _ 2 Exx B T QT
— X X —_
Oyy ( = Y Eyy Y Eyy gyy — OyyAT
O'Xy 0 EXY
sym Gyy

Equation 1-62

If the body coordinates axes x', y' are rotated through a counterclockwise angle 6 with
respect to the material x, y axes, the stress strain relations are given in body coordinates by
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FUNDAMENTAL RELATIONS FOR LINEARLY ELASTIC SOLIDS

O_r 1 Er 1
x' x ’ ’ ’ %' x I
C11 C12 C13 11
I I /
Gyl yl = CZZ C%3 Syl yl — ’22 AT
O r 1 sym C33 Er 12
Xy Xy

Equation 1-63

and
Ci1 1 cos*0 .2 2 sin* 0 . 2 2
, } = —[EXX{ 4 T 2VyyExysin® B cos” 0 + Eyy{ 4 ] + 4Gyy sin“ 6 cos” 0
Cyy » Exx sin* 0 cos* 0
1—vg =2
Eyy
Equation 1-64 a
Ci3 = (Exx + Eyy — 2VxyEyy) — 4Gyy [ sin? 6 cos? 6 + Gy,
1—vE XX
Eyy
Equation 1-64 b
VyyE 1
Clp = —~ X’]; - (Exx + Eyy — 2VxyExx) — 4Gyy [sin? 6 cos® 6
1 —y2 =xx|1 _ y2 Zxx
Xy E Xy E
vy y
Equation 1-64 ¢
C£3} (g, —vyEa) - 26 {sin’0_ (B - vyBw) - 26 {cos78 " sin6 cos 0
Chs 2 Exx vy Xy ¥ (lcos? 0 2 Exx xx Xy *¥[sin? 0
1-vg, 2 1 vg
vy yy
Equation 1-64 d
For an isotropic material the stress-strain relations in any orthogonal coordinate systems
are
[ E vE 0
o 1-v? 1-v? e
xx E . > 1 EaAT
Oyy p = -
yy 1 — v2 Yy o)1tV
Ozz E EXY
sym — <
| Y 2(1 + v
Equation 1-65
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FUNDAMENTAL RELATIONS FOR LINEARLY ELASTIC SOLIDS

and
! 2 02 1
11 _[ cos- 0 sin“ 0
—aE+vocE{_ +avE+aE{ _—
122} ( XX Dxx xyUyy bxx sin? 0 xx ¥ xy Hxx yybyy cos2 0 , Exx
1-— YE
Yy
Equation 1-66 a
sin 0 cos 0
12 = {oyy By — [o(1 = Vi) + Viytyy | Ex} .
1—vg, X
Eyy
Equation 1-66 b
30 = S
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FUNDAMENTAL RELATIONS FOR LINEARLY ELASTIC SOLIDS

1.3.4. Axisymmetric Stress State
A final special care is that of a body of revolution in a state of axisymmetric stress. In this
case, a cylindrical coordinate system (Fig. 9) is used, with the displacement u, and u, and the

temperature independent of the ¢ coordinate and ug equal to zero. The non-zero strains are

then
du,
Err = ar

Equation 1-67 a

du,
€22 = 9z

Equation 1-67 b

P~

FIGURE 9 CYLINDRICAL COORDINATE SYSTEM

-
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FUNDAMENTAL RELATIONS FOR LINEARLY ELASTIC SOLIDS

Ur

o0 = —
09 T L

Equation 1-67 ¢

_Oup  Ou,
&2 = 5, T Tor

Equation 1-67 d

The material is assumed to be locally conically orthotropic. One material axis coincides with the
circumferential direction. The others are oriented at angles 6 and 0 + m/2, with respect to the
radial direction (Fig. 10). Then shearing stresses 6 and 6,4 vanish and the relations between the
remaining stresses and strains are given by

z
n7}/23
0
r
.--_ -"""-..,
¥ 4 N

FIGURE 10 DIRECTIONS OF MATERIAL ORTHOTROPY AT A
POINT IN A BODY OF REVOLUTION
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FUNDAMENTAL RELATIONS FOR LINEARLY ELASTIC SOLIDS

1 Vs _Yse 0 -
Ess Enn E(p(p
€ss 1 Vne 0 Oss Uss
€nn — Enn E(p(p Onn + Unn AT
€po 1 0 Gy U
€sn E(p(p Osn Usn
1
Ggpd
Equation 1-68
or in the inverted form
Oss Cy Gz Gz O €ss Qs
Onn — Cz Cy3 0 €nn _ ] @un AT
Opg Cz O Epo A
0-Sl'l Sym Gsn 8SI‘l 0
Equation 1-69
with
Enn
Ci1 = (1 - Vlzup E_> Sss
fo10)
Equation 1-70 a
Enn
Ciz = (Vns * VsoVne E_) Sss
ol
Equation 1-70 b
Enn
Ciz = (Vsq) + VsnVne E_> Sss
1o}
Equation 1-70 ¢
ESS
Cpz = (1 _V§¢E >Snn
(10
Equation 1-70 d
_ Ess
C23 - Vn(p + Vansq) E Snn
(10
Equation 1-70 e
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E
C33 = <1 - Vr21s Eﬁ) S<p<P

nn

Equation 1-70 f

and
Ses _ Soe _ Son _ ( , B, Emn , Es Ee. )"1
—=——=——=(1-v5——Vpo — Vsn T~ 2VsnVneVse T
Ess  Egg nn oto) Epo Enn Eqge
Equation 1-71
In the r, z coordinate system the relations become
Orr Cii Ciz Ciz Cig]| &r 1
Ozz \ _ C22 C%s C%4 €2z | _ :2 AT
Opo C33 C34 €pg 3
Oy sym Cha €1y Al
Equation 1-72
where
Ci; = Cy1 cos* 0 + Cyy sin* 0 + 2(Cy; + 2Ggy ) sin? O cos? 6
Equation 1-73 a
Ciz = Cyp + [Cyq + Cyy — 2(Cqz + 2Ggy)] sin? 6 cos? 6
Equation 1-73 b
Ci3 = Cy3c08%0 + C,5sin? 0
Equation 1-73 ¢
Ciq = [C11 €052 B — Cy5 5in% B — (Cy3 + 2Ggy ) (cos? O — sin? 0)] sin 6 cos 6
Equation 1-73 d
Chy = Cyq sin* 0 + Cy5 cos* 0 + 2(Cy, + 2Ggy, ) sin? 6 cos? O
Equation 1-73 ¢
Ch3 = Cy3sin?0 + C,5 cos? 0
Equation 1-73 f
Chs = Cq15in? 0 — Cy, c0s20 + C;, + 2Gg, cos? 0 — sin? B'sin O cos O
Equation 1-73 g
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FUNDAMENTAL RELATIONS FOR LINEARLY ELASTIC SOLIDS

C33 = C33
Equation 1-73 h
Csy = (C13 - C23) sin@ cos O
Equation 1-73 i
Cha = Ggn + [Cy1 + Co2 — 2(Cy5 + 2Ggy )] sin? 8 cos? 0

Equation 1-73 j

and
' = (C106s + Cy20nn + Ci304p4) €052 0 + (C1p0ss + Cop0tnm + Co30pe ) SIN? 0
1 11%ss 12%nn 13%pe 12%ss 22%m 23%pq
Equation 1-74 a
s = (Ci10ss + Cyaann + C30e ) Sin? 0 + (Cp0tss + Cop0tym + Co304 ) COS? O
2 11%ss 12%nn 13%pe 12%ss 22%m 23%p¢
Equation 1-74 b
’3 = Cy3055 + Cozany + C33acpcp
Equation 1-74 ¢
A:l- = (Cll - C12)O(SS + (Clz - sz)ann + (C13 - C23)O((p(p Slne CoS e
Equation 1-74 d
For an isotropic material the stress-strain relations are
(1-v)E vE vE
A+vQ1-2v) 1+vA-2v) AQA+v)(1-2v)
Opr (1-v)E VE 0 Err 1
Ozz | _ Q1+v)1-2v) (1+v)(1A-2v) &z | )1 EaAT
O (1-v)E o 1{1-2v
oy (1+v)(1—2v) £ 0
E
2(1+v)d
Equation 1-75
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Chapter 2. The Finite Element
Method

36 P4
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THE FINITE ELEMENT METHOD

2.1. The Principle of Minimum Potential Energy

A variational principle which is equivalent to the differential equations of equilibrium and
boundary conditions of linear elastic solids may be derived from the principle of virtual work.
This principle may be expressed mathematical as

[ s f i ]

Equation 2-1

where integrals are over the volume V and over the surface S of the deformed body. The left side
of the equation is called the internal virtual work, the virtual work of internal forces, while the
right side is the virtual work of surface and body forces. Here o is the actual stress matrix
satisfying the equations of equilibrium, t, is the surface stress vector, f is a body force vector
(force per unit volume)

fx
f=1{f,
f,

Equation 2-2

Su is an arbitrary infinitesimal change in the displacement vector u, and

dduy
Ox
dduy,
Oy dy
8eyy adu,
85=<6€ZZ>=< 9,
deyy dduy +68uy
8¢y, dy Ox
2, 0y
ddu, 0Jdéu,
0x * dy

Equation 2-3

5 37
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THE FINITE ELEMENT METHOD

If the surface is divided into the region S, on which displacements are prescribed and S on
which the stress vector is prescribed, and if the displacement matrix u is chosen so as to satisfy
the displacement boundary conditions on S, the principle of virtual work may be rewritten for a
linearly elastic body which satisfies Hooke's law as the principle of minimum potential energy

Ol =0
Equation 2-4

where

1 _
H=fff€TC§s—AAT—qudV—ff ul tdS
\"4 So

Equation 2-5

The functional II is called the potential energy of the deformed body. The integral

1
U =§fﬂ§c$dv
A\

Equation 2-6
is called the strain energy of the body. The principle may be stated as follows:

Of all displacement states which satisfy boundary conditions on displacement, the unique
displacement state which satisfies the equations of equilibrium and boundary conditions on stress
minimizes the potential energy of the deformed body.

Variational principles in which quantities other than the displacements vary may be obtained !'".
The principle of minimum potential energy, however, is the statement most commonly used in
finite element approximations.

2.2. Strain Energy Expressions for Beams, Plates and
Shells

The analysis of structures which have one or two dimensions small compared to the others is
usually accomplished with the help of simplifying assumptions. These are discussed below. It
will be noted that in all cases the strain energy is expressible as an integral involving an
integrand of the form &' Ce.
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THE FINITE ELEMENT METHOD

2.2.1.Straight Beams

A beam is a three dimensional structure for which the length is large compared to the width or
depth of the cross-section. The reference axis defined by the line joining the centroid of each
perpendicular cross-section is straight. When shear deformations are taken into account, the
stretching and bending displacements are assumed to be given by the following:

Plane cross-sections perpendicular to the undeformed centroidal axis remain plane and
unchanged in shape but translate and rotate with respect to the plane normal to the deformed
centroidal axis. Then for small deformations the deflection can be shown to be of the form

uy =uy (%)
Equation 2-7a
u, =u; (x)
Equation 2-7b

Uy = uXo x)—y¥, )+ Zlpy (%)

Equation 2-7¢

where Wy and W, are rotations of the cross-section about the y and z axes, respectively. In
addition, torsional deformations are assumed to be governed by St. Venant torsion theory
wherein the cross-sections rotate as rigid bodies about the x-axis through an angle which varies
linearly with distance from the origin and undergo axial displacements which are a functional
only of position in the cross-section. Then

u =w(y,z)
Equation 2-8a

dW¥,
dx

Lly = —XZ

Equation 2-8b

dw,
dx

u, =Xy
Equation 2-8c

. . . . dwy .
where w is the cross-sectional warping function and d—XX is the constant rate of change of the

angle of rotation about the x-axis. Then the non-zero strains are given by
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THE FINITE ELEMENT METHOD

du d dv.
Xo v, y
=T _ + — AT
Exx ax Y dx ax ¢

Equation 2-9a

duy, aw dW¥,
Exy: K—‘PZ + a—y+y dx

Equation 2-9b
_ (du, w Y+ ow 4 dW,
Fxz = dx y 0z y dx

Equation 2-9¢

With the additional assumption that the direct stresses oy, and o, are negligible compared to oy,
stress resultants are defined in terms of deformations by

du

X0

dx

Py =f oyxdA=E|A —af ATdA
A A

Equation 2-10a
dw, dv,
My = L ZO'XXdA =E IyyW - IX)/K - O(fA zATdA
Equation 2-10b
dv, d¥,
MZ = —jA yGXXdA =E IZZT_ IXyK— (XJA yATdA

Equation 2-10c

— duy

Vy =—f O'XydA=ky GA \{JZ —K

A

Equation 2-10d

du,
V, :L 0yx,dA =k, GA pr +E

Equation 2-10e

dv.
T= j (y(rXZ - ZO'Xy)dA =GJ d)):
A

Equation 2-10f

& I... =
T DARSSAUILT The SOEXPERIENCE ¢
{. } j SUYSTEMES ZDEXPERIE! E ¢



THE FINITE ELEMENT METHOD

These may be expressed in matrix form as

p=Ce—A
Equation 2-11
with
pr={Vy V, V, TM, M, }

Equation 2-12a

dw,

du du du dv, dW¥,

=T X0 y Z X y
=J{—=0 [L_wy Ty

€ dx < dx z > < dx y > dx dx

Equation 2-12b

EA 0 0 0 0 0
k,GA 0 0 0 0
_ kK,GA 0 0 0
C= G] 0 0
El, —Ely,
| sym Elyy |

Equation 2-12¢

AT =Ea fATdA 0 0 0 szTdA —fyATdA

A A A

Equation 2-12d

Here P, is the axial force, while Vy and V, are cross-sectional shearing forces. Bending moments
about the y and z axes are denoted by My and M, respectively and T is the torsional moment

dx

about the x-axis. Positive directions for these quantities are shown in Figure 11. Geometric

properties are denoted by A, the cross-sectional area, and lyy. L,, and Iy,, the cross-sectional

moments and product of inertia:
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THE FINITE ELEMENT METHOD

FIGURE 11 POSITIVE DIRECTIONS FOR STRESS RESULTANTS

_ 2
Iyy—fz dA
A

Equation 2-13a

I, = J y? dA
A

Equation 2-13b

Iy, = f yzdA
A

Equation 2-13¢
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THE FINITE ELEMENT METHOD

For principal axes, Iy, vanishes. J is the cross-sectional torsion constant and has no simple
geometric interpretation except for solid or annular circular cross-sections for which it is the
polar moment of inertia. The constants ky and k, are correction factors introduced to account for
the actual non-uniform distribution of shearing stresses and strains over the beam cross-section

The strain energy stores in the beam is now given by

L
1 _
U= | &' Cedx
gl

0
Equation 2-14

Axial stresses in the beam may be calculated from the expression

P, M, M,
= —_ + z—
ATV, T

Equation 2-15

The maximum shearing stress due to torsion is calculated from the formula

Equation 2-16

Where Cy is a constant which depends on the shape of the cross-section !,

2.2.2.Flat Plates

A plate is a structure for which one of the dimensions, the thickness, is small compared to
the length and width. A reference plane is situated midway between the top and bottom plate
surfaces. Deformations are given by assumptions which are an extension of those for beams:

Straight lines initially perpendicular to the undeformed plate middle surface remain
straight and unchanged in length but rotate with respect to the normal to the deformed middle
surface.

The displacement components can then be shown to be given by
U = uxy) + 2% (%)
Equation 2-17a
uy, = v(xy) — 2% ()

Equation 2-17b
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u; =wxy)

Equation 2-17¢

where W, and W, are rotations about the x and y axes, respectively. The strains are now found to

be

_6u+ 6‘{’y
SXX_OX z ox

Equation 2-18a

_ov 0¥y
By Tox T ? dy

Equation 2-18b

€2 =0
_au ov (0% a¥
By T Tox T? dy ox

Equation 2-18¢

Equation 2-18e

With the direct stress o,, assumed to be negligible, the strain energy may be derived for

an isotropic plate as

10 .1 %
U=Effe Cé dxdy

A
Equation 2-19

where

ST _ a_u @ (a_u_l_@) v, _a‘l’x vy _6‘PX (6_w_lp
dx dy \dy 0x

dy ady dy 0x

Equation 2-20
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o O O

=~
O o oo

vD

o
I
U
IOO o O o
<

o oo o oo
S oo o oo

sym Gh

Equation 2-21
and

Eh

1—-v

K=

2

Equation 2-22a
Eh?
D=—r—"——
12(1—v*)
Equation 2-22b

The integration is over the middle surface area of the plate. The factor 5/6 is inserted into the
transverse shearing strain expression to account for the nonuniform distribution of shear stress
and strain over the plate thickness.

If transverse shearing strains are neglected, the normal to the undeformed plate middle
surface remains normal to the deformed middle surface. Then

lP_Bw
Y ox

Equation 2-23a

¥ ow
X - ay

Equation 2-23b

and the non-zero strains become

ou *w
=——1z

€

Equation 2-24a
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ov *w

=—=—z

Eyy dy dy?

Equation 2-24b

du ov 9% w

EXY:a_yJ’&_ Zaxay

Equation 2-24¢

The strain matrix & and C are then replaced in Eq. (2.20) by

.t _j0u  0v  Qu v  d*w d*w 0d*w

e = + > >
ox dy dy 0Ox 0x° 0Jy° 0Oxdy

Equation 2-25

( K vK 0 0 o0 0

K 0 0 0 0

LV 0 o 0

C= 2
D vD 0
D 0
[ sym 2(1 —v)DJ
Equation 2-26
46 .4
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THE FINITE ELEMENT METHOD

2.3. The Finite Element Method

In the implementation of the principle of minimum potential energy as the basis of
approximate solutions by means of the finite element method of analysis, the region under
consideration is divided into a finite number of subregions, say N, called “elements” (Fig.
12).

FIGURE 12 DIVISION OF A REGION INTO SUBREGIONS

The total potential energy of the region is then the sum of the potential energy of the
subregions, i.e.

™= T,

-

=1

Equation 2-27

=
L DASSAULT & T EVDERIEMNE
(P> SUSTEMES SRR e

47



THE FINITE ELEMENT METHOD

with

1
m = [eTC(Es—AAT)—fTu]dV— ftTuds
v

S

O

1

Equation 2-28

The volume V; is that of the i element while Ssi 1s that portion of the surface which bounds the
.th
1 element.

The displacement matrix u is now represented within a typical element as
u;p =Djq;
Equation 2-29

where the components of q; are displacements and possibly displacement derivatives at a number
of nodal points of the element and those of D; are functions of position within the element, called
interpolation functions, which define the variation of the displacement matrix within the element
and on its surface. Since the displacement matrix u must be continuous over the entire region, it
follows that the displacements at the common nodes of the interelement boundary of two
adjoining elements must be the same and that the functional representations of the displacements
over the common - boundary must be identical. The strain matrix €; is then obtained as

& =B q;
Equation 2-30
in which B; is a matrix the elements of which are, in general, function of position. Thus
1
m =qf (Eki q —F )

Equation 2-31

with
ki = J‘B;TCI Bi dV
Vi
Equation 2-32
and
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F, = f DIfdV + f Dt, dS + f BfC, A, AT, dV

Vi S Vi
%

Equation 2-33

The matrix k; is called the element stiffness matrix. The components of F; are equivalent
applied nodal forces which are consistent with the assumed displacement distribution.

With some manipulation, the potential energy of the entire region given by

T

i
o

i=1
Equation 2-34

may be expressed in the form
1
T
=q" (=Kq— F)
T=q (2 q
Equation 2-35

where q is the matrix of all nodal displacements and derivatives arranged consecutively, K is the
assembled symmetric stiffness matrix of the entire region and F is the assembled nodal load
matrix. The relationship between q; and q may be defined by

% =Mq
Equation 2-36

where M; is a matrix giving the identification between nodal displacements q; of region I and the
elements of the total nodal displacement matrix q. Then the stiffness matrix K is given by

N
K= ZMiTki M
i=1

Equation 2-37a

and
N
F= Z M{F;
i=1
Equation 2-37b
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THE FINITE ELEMENT METHOD

The potential energy must now be minimized with respect to each of the unknown nodal
displacements and derivatives, say M in number, while those nodal displacements on the surface
S, must satisfy the prescribed displacement conditions. Then

on = Z—Sqi =0
j=1 aq]-

Equation 2-38

where the summation is over all unknown values of q;. Since the values of 8q; are arbitrary, the
minimization procedure leads to the set of equations

on

=0 i=1,2,..M
(’)q]-

Equation 2-39

where there are as many equations as there are unknown values of g;.

The procedure outlined above leads to nodal values which, in general, are an
approximation of the actual nodal values and which define approximate element stresses
obtained from the equation

o; =C; Bj q;
Equation 2-40

The accuracy of the approximation may be improved by

a) Decreasing the size of the subregions and increasing their number, with the interpolation
functions for each region unchanged (the h-method).

b) Increasing the number of nodal points and the complexity of the polynomial interpolation
functions in the subregions, with the number of subregions unchanged (the p-method).

c) A combination of methods (a) and (b) wherein the size of some elements is decreased and
their number increased with no change in the interpolation functions while for other
elements the size is unchanged but the complexity of the interpolation functions and
number of nodal points is increased (the h-p method).
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24, Interpolation Functions

The interpolation functions which define element displacements at points other than at the
nodes are not completely arbitrary but are required to satisfy certain conditions imposed by the
form of the strain energy function and by convergence requirements:

a) Nodal displacements consistent with constant strain should not yield nonconstant strains
in the element. Nodal displacements consistent with rigid body motion should yield zero
element strains.

b) The derivation of section 2.3 requires that the displacements along the common edge of
adjoining elements are such that the stresses or forces along that edge do no work in
acting through the virtual displacements associated with each element. For strains
involving only first derivatives of displacements, the implication is that displacements
along the common edge of adjoining elements, and hence the functions defining those
displacements, should be identical; for strains involving second derivatives (beams,
plates, shells), first derivatives of displacements should be identical as well. In particular
the derivatives normal to the common edge should be identical in this case.

Elements involving displacement functions satisfying these conditions are called conforming
elements.

The satisfaction of condition (b) may be difficult to achieve. It is possible, however, to obtain
convergence of the finite element process with the use of displacements functions which violate
continuity requirements, but which satisfy continuity in the limit as the size of the element
decreases. Such elements are called non-conforming elements. The condition is ensured if the
previous constant strain requirement (a) is satisfied and if displacement continuity occurs under a
constant strain condition. A test for the achievement of such continuity is known as the "patch
test". It requires that an arbitrary group of elements having a common node be given nodal
displacements corresponding to a constant strain condition. The finite element equilibrium
equation at that node must then be satisfied identically to ensure continuity satisfaction.

The interpolation functions are usually taken as polynomials of orders depending on the
number of nodes and nodal variables. The coefficients of the polynomial terms are equal in
number to the total number of nodal variables and are obtained by requiring that the function
give the desired nodal variables at the chosen nodal points.

Linear interpolation functions yield the simplest elements and are often used. For a
normalized square, for example, displacements are expressible as (Fig. 13)

4
u= ZNI U
i=1

Equation 2-41a

=5
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4
V:2Ni Vi

i=1

Equation 2-41b

with
Ny =(1-91-n)
N, =(1-9(1-n) -1<§<+1
N; =(1-91+mn) “l=n=+1
N, =(1-91+mn)
Equation 2-42
il
i)
4 |+1 3
|
-1 | +1
____I____._.___%,g
|
1 " 2
[
a. Normalized Square Region
Us
fou
/// ________ P
% 4T
b. Displacement Variation
FIGURE 13 LINEAR INTERPOLATION FUNCTIONS
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THE FINITE ELEMENT METHOD

In the p-method of analysis considerably increased accuracy relative to the number of
additional unknowns is achieved by increasing the complexity of the polynomial interpolation
function while keeping the element size constant. Additional unknown quantities associated with
the element can be defined in a variety of ways. For problems which require only displacement
continuity (called C° continuity) displacements at additional nodal points along the element sides
and in the element interior may be introduced. It is also possible to use higher order derivatives
at the original nodes as additional unknowns, in which case continuity of first derivatives as well
as displacements (called C' continuity) is obtainable.

In both of the above types of higher order elements, the stiffness matrix must be recalculated
anew for each new set of unknowns. Hierarchic interpolation functions have the advantage of
requiring only the calculation of additional row and column terms for the added unknowns. For
these interpolation functions, nodes are introduced at element corners. Unknown quantities for
C° continuity are chosen as corner node displacements and as higher order derivatives at the
element side midpoints. Each additional set of derivatives is associated with polynomial terms
having the same order as the derivatives and which vanish at the element corners. Hierarchical
shape functions for C' continuity can be obtained but with more difficulty.
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2.5. Isoparametric Elements

Element interpolation functions are readily derived for single geometric shapes, i.e.,
triangles, rectangles, tetrahedrons, and cubes. In many applications of the finite element method
it may be desirable, however, to consider elements with more irregular shapes and with curved
rather than straight edges. In particular, curved elements may be used to closely model curves or
surfaces. Interpolation functions for simple shapes may be extended to these more complicated
shapes by a transformation of coordinates which map the boundaries of the irregular element
onto those of the regular element. While this transformation can be effected in many ways, a
very useful mapping is one for which the mapping function and the interpolation function are of
the same form. The elements resulting from this type of mapping are called isoparametric
elements. If the simple element is conforming, the isoparametric element will likewise be
conforming.

Displacements in the simple geometric shape are assumed in the form

u(®) =D(®)q
Equation 2-43

where q is the matrix of nodal unknowns and coordinates § denote non-dimensional position in
the element. These can be normalized area and volume coordinates for triangles and tetrahedra,
respectively, and normalized Cartesian coordinates in rectangles and cubes. The transformation
mapping the complex element onto the simple element is then taken as

x = D(®)x
Equation 2-44

with X the matrix of nodal coordinates. Thus the number of nodes that must be considered on
each edge is governed by the shape of the element to be mapped. For example, a quadrilateral
can be obtained by using a linear interpolation function for a square and the four corner nodes.
The inclusion of additional nodes and interpolation functions of higher order will result in
quadrilaterals with curved sides (Figure 14).
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a. Mapping of Quadrilateral with Straight Sides on Square

X =i.§—.:‘|N"l:§’ mx, y =i>i:1N"(‘l;’ ) ¥

n
A
4 +1 3
(%4:¥a
-1 1 >
ha— % 1

) 22
b. Mapping of Quadrilateral with Quadratically Curved Sides on Square

8 8
x=i§1Ni(‘isn}xi Y=I§1Ni(vg: TU ¥i

i

FIGURE 14 ISOPARAMETRIC MAPPINGS OF QUADRILATERAL
REGIONS

In order to use isoparametric elements, the variational functions which are expressed in

terms of a Cartesian coordinate system must be expressed in terms of the parametric coordinates.
In two dimensions

x=x(gn)

Equation 2-45a

y=y(¢&, 7)

Equation 2-45b
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so that
g 00§ 4 d dn
dx 0tdx  Onox
Equation 2-46a
0 008 4 d on
dy 0tdy onady
Equation 2-46b
where
(0% (%Y
o0x 0%
i3 0o 0 o 17|%
om( Jjlo o -1 o])oy
% 1 0 o ol|a
o %
\dy on
Equation 2-47
and
ox 0x
_ Jg  oOn
] = det Q @
9§ on
Equation 2-48
Thus
(auw ( ﬂ _@ 0 0 (ﬂw
( Ou 9x on 0% %
P ou ox 0Ox 0 0 dy
Lol poo ol ool & R
5 = (=] dy dy| | ov
0 1 1 ol|— 0 1. 1 0lj o 1 - " a3
3y 3% @ 0 0 ox 0x ||ov
LayJ L an 08 Lam
Equation 2-49
And
=3
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dxdy = Jd&dn
Equation 2-50

The resulting integrals must be evaluated numerically since exact integration is usually difficult
or impossible in terms of known functions.

It is also possible to define elements with different interpolation functions and mapping
functions, i.e.,

u(®) = D(&)q
Equation 2-51a
x = D(§)%
Equation 2-51b

with

D(¥) # D(¥)
Equation 2-51¢

If the interpolation functions are of higher order than the mapping functions, the element is said
to be subparametric. Hierarchic elements are subparametric if a linear or quadratic mapping
transformation is used. If the interpolation functions are of lower order than the mapping
functions, the element is said to be superparametric. Subparametric elements generally satisfy
convergence and completeness requirements. Superparametric elements may cause problems,
however, and must be investigated for completeness and compatibility.

2.6. Numerical Integration

While the integrals required for stiffness and nodal force matrices may often be expressed in
explicit form, it is sometimes more convenient and less time consuming to use methods of
numerical integration for their calculation. These consist of expressing the integral as a
summation of products of values of the function at specified sampling points and weighting
constants.

In one dimension, then,

1 M
[ tds =" wi )
-1 i=1

Equation 2-52
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If the values of §; are equally spaced, m sampling points yield m unknown values of Wi which
can be chosen to integrate a polynomial of degree m-1 exactly. This method is known as
Newton-Cotes quadrature. If, however, the locations of the sampling points are unknown as well,
m sampling points yield 2m unknowns which can integrate a polynomial of 2m-1 exactly. This
method is known as Gauss quadrature and is preferable in that fewer sampling points are
required for a polynomial of a given degree. Consider, for example, a third degree polynomial

f=a+bt+ct® +d& -1<t< -1

Equation 2-53

Then

1
2
fde=2a+§c

-1
Equation 2-54

The use of two Guass points at =¢, &, then requires that
2
W, (a+bf +cg2+de3)+W, (a+bf, +cg3+8) = 2a+3c

Equation 2-55a
Equating coefficients of a, b, ¢ and d on both sides of the equations yields four relations from
which is obtained

W, =W, =1

Equation 2-55b

- g =L
El_gz_ﬁ

Equation 2-55¢

Newton Cotes integration would have required the use of 4 sampling points.

For a square or a cube, integration can be considered to be carried out first in one
direction and then in the other. Thus for a two-dimensional square

1 1 M 1 M N
[ [remasan=>"w [t man=>">"w, w; 5 ;)
-1 -1 i=1 -1 i=1 j=1
Equation 2-56
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where the point locations and weighting functions are identical to those of one dimensional
Gauss quadrature. The number of sampling points need not be the same in both directions but are
usually taken to be identical. For a cube, similarly,

1 P
f Zwi W; Wy £ ,mj 5 Gk )
-1 - j

j=1 k=1

—_—

1 M N
[ Engdganag =)
21 i=1

1

jay

Equation 2-57

2.7. Reduced Integration

While numerical integration using an appropriate number of Gauss sampling points can
exactly integrate polynomial expressions of a given order, exact integration may lead to
erroneous results in some cases. Examples of problems for which errors will occur with exact
integration are those involving isotropic elasticity elements with Poisson's ratio v near 1/2 or thin
beam, or plate and shell elements with shear flexibility. The strain energy associated with
volume change should become small compared to to strain energy of shape change as Poisson's
ratio approaches 1/2, in the former case. In the latter case, the strain energy associated with shear
deformation should become small compared to the strain energy of bending as the thickness
decreases.

The difficulty arises from the circumstance that the part of the structural stiffness matrix
associated with the vanishing portion of the strain energy actually becomes increasingly
dominant and the structure overly stiff. The displacements obtained from the analysis then
decrease to zero as Poisson's ratio approaches 1/2 or thickness approaches zero, giving a set of
erroneous displacements which satisfies the condition of zero volume change or of zero shearing
deformation. The situation is usually remedied by reduced integration, i.e., the use of fewer
Gauss sampling points for numerical integration of the offending terms than are required for
exact integration. If the number of points is reduced sufficiently, that pan of the stiffness matrix
will become singular and will result in accurate solutions.

2.8. Solution of simultaneous Linear Expressions

The set of finite element equilibrium equations, however obtained, must b e solved to achieve
the purpose of the analysis. Although there are a number of ways to solve simultaneous linear
equations, the method which is most widely used is that of Gauss elimination. In this method the
equation

Kq=F
Equation 2-58a

is transformed to the form
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Uq=F
Equation 2-58b

where U is an upper triangular matrix, i.e., all elements of the matrix below the principal
diagonal are zero. The process of matrix transformation to upper diagonal form consists of using
the first equation to eliminate q; from the second and succeeding equations. The second equation
is then used to eliminate q, from the third and succeeding equations. The process of elimination
is continued until the last equation consisting of a single term in the U matrix is obtained. The
values of q are then obtained by solving the last equation for qN alone, then substituting the
result in the preceding equation to yield qn.;, and so on.

2.9. Stress Calculations

The end result of the analysis, the distribution of stresses in the structure, can be obtained
from an appropriate finite element expression once the displacements are calculated. The stress
values will vary over the element. At the boundary between adjoining elements with only C°
continuity imposed, the first derivatives of displacement normal to the edge and henc the stresses
will be discontinuous. Similarly for beams, plates and shells which require C' continuity, the
second and mixed derivatives of displacements will usually be discontinuous at the boundary of
adjoining elements and will lead to discontinuous stresses. The question of what are accurate
stress values therefore arises. Investigations have shown that the most accurate stress values are
those at the Gauss integration points. These values are calculated in the analysis and are
extrapolated to yield stresses at element boundaries.
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Chapter 3. Vibration Frequencies of
Structures
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3.1. Vibration Modes and Frequencies

A structure which is initially disturbed from a rest state will continue in motion without the
application of force. For small deformations, this motion can be expressed as the superposition of
vibration modes, each of which has a sinusoidal time variation with a distinct frequency. Such
motions are called free harmonic vibrations. The modes of vibration are orthogonal, a fact which
renders them useful in solving problems of the response of structures under time dependent
loading as well as under specified initial conditions.

3.2.  Finite Element Analysis

The variational principle for determination of vibration modes and frequencies is given by
S(U+V)=0
Equation 3-1

where U is the strain energy stored in the body given by

1
U=EﬂfsTC£dv
v

Equation 3-2

And V is the kinetic energy of the body

=3 o] (O5) +G5e) ()

Equation 3-3

For plates and shells where the displacements are assumed to be given by
u, = g(x, v, +z¥ (xyt)
uy =uy (xy,t) —z% (xy,t

Uz; = Uz (x Y, t)

the kinetic energy becomes

2 2 2
1 Ay oty a1, ph?
V_ﬁlj{p(at)+(at)+<at 12

where integration is over the area of the middle surface.

o, \° L (7% ’
ot at

}dA
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The displacement are expressed as the product of a function of space and a harmonic
function of time

Equation 3-4a
— ot

uy =uy (x,y,z)e'
Equation 3-4b

u, =u, (xy,2)e'

Equation 3-4¢

The use of the notation

=]
I
c
<

Equation 3-5

and € for the space portion of the strain matrix, yields the variational equation as

19 %jf {(ETCE—(DZ pﬁTﬁ)dv} =0

Equation 3-6

The usual finite element approximations then lead to a set of homogeneous simultaneous
equations of the form

[K— w? M]{q} = {0}
Equation 3-7

where K is the static stiffness matrix of the structure and M is a mass matrix. If the interpolation
functions for displacements are used to determine the mass matrix M, the result will be banded.
It is called the consistent mass matrix since it is consistent with the assumptions used to
determine K. Sometimes a diagonal matrix M, called a lumped mass matrix, is used. This implies
that the mass of the structure is concentrated at nodal points. There are no terms in the mass
matrix for those equations corresponding to minimization with respect to nodal displacement
derivatives so that nodal displacement derivatives may be expressed in terms of nodal
displacements and eliminated from the equations. Diagonalization of the mass matrix may also
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be obtained by using a diagonal value which is the sum of all of the mass matrix elements in a
given row and avoids the elimination of nodal displacement derivatives.

For values of q other than zero to exist, the matrix of coefficients of Egs. (3.7) must be
singular. Thus the characteristic equation for the vibration frequencies w is given by

det|K— w? M| =0
Equation 3-8

The corresponding nodal values q which determine the vibration mode shapes are obtained by
eliminating one of Egs. (3.7) and solving for N-1 of the elements of q in terms of the Nth
element. The vibration modes may be normalized to satisfy the weighted orthogonality condition

{a } MIfa; } =5
Equation 3-9a

where

_(Oifi#]j
8”_{1ifi=j

Equation 3-9b

3.3.  Solution of Linear Eigenvalue Problems
The set of equations described by

[K — w? M]{q} =0
Equation 3-10

is called a linear eigenvalue problem. The characteristic equation for the eigenvalue w? is given
by

det|K — w?* M| = 0
Equation 3-11

which, if expanded, would yield a polynomial equation for w”. The order of the polynomial is
equal to the order of the matrices involved. Unless the matrices are of low order, expansion is not
attempted. In any case, exact solutions are known only for polynomials of fourth order or less.
Thus iterative numerical methods must be used. There are numerous methods [“], some of which
are discussed below.
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3.3.1.Subspace Iteration!'" "*!

When the number of eigenvalues of the system of equations is large, determination of all
them may be very time consuming. In many cases, a smaller number of eigenvalues and
eigenvectors may be sufficient and alternative methods are used. One of these is the method of
subspace iteration in which an initial set of mode shapes which are likely to represent the
important modes of the structure is chosen. If the eigenvalue problem is of nth order the number
of modes chosen is m<<n. These modes are arranged by column to produce the matrix <1>1
which is of order n x m. The equation

[KInxn [TZ ]nxm = [Mlnxn [q)l ]nxm

Equation 3-12

is then solved for T,. Define now

K@

— 7T
(mxm) = T, KT,
Equation 3-13a

M®

(mxm)

= TS MT,
Equation 3-14a
and solve, say by the Jacobi method, for the eigenvalues and eigenvectors of the system
KPv, =MPy, 4,
Equation 3-15
An improved set of eigenvectors is now
¢, = TzT V2
Equation 3-16
The process is repeated using the operations
KTyy1 = My
Equation 3-17a
K(k+1) = Tlr<r+1K'I‘k+1
Equation 3-17b
MEY = Tlr<r+11vr[‘k+1

Equation 3-17¢

3 SYUST 65
™= DASSALUILT The SDEXPERIENCE .
L/D SUSTEMES e 3DEXPERIENLCE comy



VIBRATION FREQUENCIES OF STRUCTURES

(k+1) _ agk+1)
K Ve = M Vg g Ay
Equation 3-17d
_ 7T
Prer1 = Tier1Vira
Equation 3-17e

until convergence is achieved.

A check on whether the desired eigenvalues and eigenvectors have been obtained is
afforded by the S turm sequence property of the eigenvalue problem which states that if the
matrix [K — w2M] with a given value of w” is decomposed into the form

[K—w?M]=5"s
Equation 3-18

where S is an upper triangular matrix, the number of eigenvalues less than o’ is equal to the
number of negative diagonal elements of S . Thus if the subspace iteration method has produced
m eigenvectors which are supposedly the m lowest eigenvectors, then the use of a value of w?
slightly greater than w2, should produce exactly m negative diagonal values of S.

3.3.2.Lanczos Algorithm

A method of eigenvalue extraction which has been found to involve considerably less
computation time for large eigenvalue problems is the Lanczos algorithm. The stiffness matrix K
is decomposed into the form

K=LL"
Equation 3-19
where L is a lower triangular matrix. The substitutions
Yy=L"q
Equation 3-20a

1

A=—
(1)2

Equation 3-20b
transform the eigenvalue problem to the form
AY =Y

Equation 3-21a
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with
A= (LME™’
Equation 3-21b

The matrix A is then transformed to a symmetric tridiagonal form with the use of an orthogonal
matrix V such that

VIAV =T
Equation 3-22
with T tridiagonal. The substitution
Y =VQ

Equation 3-23

results in
w B, -
Bl 2% Bz
BZ o3 83
TQ = By Q= %Q

Equation 3-24

which can be solved easily for accurate eigenvalues using a determinant search method (the
bisection method) in conjunction with the Sturm sequence property of the eigenvalues. Not all of
the n eigenvalues are found. The number of eigenvector components and equations is usually
truncated to a value m<n, where m is twice the number of desired eigenvalues. The
corresponding eigenvectors Q may be found by the method of inverse iteration.

The column vectors of the matrix V are generated so that each is orthogonal to the two
preceding vectors. From the definition

AV =VT
Equation 3-25a

can be obtained the relation
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AV; =Bi1Viei o5 Vi + B Vigg
Equation 3-25b

Where V; is the jth column vector of V and satisfies the relation
VY =
Equation 3-25¢
If V; and V. are known, then
@ = V{'AV;
Equation 3-26a
_ (wTw. )72
Bi =(Wi'w; )

Equation 3-26b

with
Wi =AV; =B Vi -V
Equation 3-26¢
and
Vigr = iWi
Bi

Equation 3-26d

The sequence of operations is started by using the first column of the unit vector as V; and
taken as zero.

After a number of steps, the Lanczos vectors V; may lose orthogonality because of
truncation of the number of eigenvalues and will require reorthogonalization. Vector
reorthogonalization is achieved by a procedure which can be summarized as follows

Sipr =P By o P W,
Equation 3-27a

Piy1Sit1 = B €1

Equation 3-27b

—i
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Vier =P P Pygeiyg
Equation 3-27c¢
with
P =1
Equation 3-27d

and e; the ™ column of the unit matrix. The eigenvectors of the original equation are then

_ Q
a=L"N"p P, . A

Equation 3-28
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Chapter 4. Buckling of Structures
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BUCKLING OF STRUCTURES

41. The Phenomenon of Buckling

In the linear theory of structural analysis, the behavior of a structure under a given loading is
unique. For specified loading and support conditions the structure can deform in only one way
and have only one internal stress state. For sufficiently large loads the nonlinear aspects of
structural behavior can no longer be ignored. One of the causes of nonlinearity is nonlinear
material behavior for which Hooke's law no longer applies. It is possible, however, for the
structure to behave in a nonlinear fashion while the material is still in the elastic range. This is
especially true for structures for which one dimension is small compared to the others, such as in
long beams or thin plates and shells.

One of the phenomena which may occur is that of buckling. The classic example is that of an
axially compressed initially straight beam which is found to have two distinct equilibrium
positions, the straight position and a deflected position, when the load exceeds a certain critical
value. Similarly, an initially flat plate under inplane loading can deflect laterally and remain in
equilibrium when the load exceeds a critical value. In both of these cases the critical load is a
reasonably accurate measure of the load below which deflections will not become excessive.
Thin shells are also subject to buckling, but the effect of small initial deviations from the
idealized shape can result in actual critical loads which are very much less than those calculated
theoretically. For these structures recourse is usually had to empirical "knockdown factors" by
means of which the theoretical load is reduced.

4.2. Calculation of Critical Loads

Critical loads are calculated by considering a structure which has an initial stress and
deformation state due to some distribution of externally applied loads with a magnitude governed
by a proportionality factor A. When the linear theory of elasticity is used, the calculated initial
stress and deformation states are proportional to the external loading and thus have a magnitude
which varies linearly with A. The equilibrium of the structure when arbitrary infinitesimal
disturbances of the initial deflection state are superimposed is then investigated. The equations of
equilibrium are linearized with respect to the small disturbances so that their solution by means
of the finite element method leads to a set of simultaneous linear equations for the modal
unknowns of the form

[Kp — 2K ]{a} = {0}
Equation 4-1

where Ky is the usual structural stiffness matrix in the absence of applied loading while K¢ is a
“geometric stiffness matrix” which is independent of the material properties of the structure.
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BUCKLING OF STRUCTURES

For solutions other than the initial stress state to exist, i.e.,
(@) = (0}
Equation 4-2
the determinant of the coefficients matrix must vanish. Then an equation for A is given by
det[K—AKg ] =0
Equation 4-3

The lowest value of A which satisfies equation (4.3) is called the critical value, the value at which
the structure can suddenly undergo large deformations which differ from the expected
deformation state under the system of loading. The corresponding distribution of nodal values of
q is called the buckling mode shape. Relative values of q may be calculated by deleting one
equation from Eqs (4.1) and solving for the ratio of N- 1 of the nodal values and the Nth nodal
value.

4.3. Variational Principles for Buckling
A variational principle from which critical loads can be obtained is given by

ST[B :0

Equation 4-4

with
1 T T~
g = Eﬂf(s Ce +AA'GA) dv
v
Equation 4-5a
and
T_ duy duy Ouy Ouy Aduy duy % % %
dx dy 0z 0x dy 0z 0Jx dy 0z
Equation 4-6b
72 .4

T DASSAULT The CVDERIERMCE ¢
A-:}J SUSTEMES SDEXPERIEMCE ¢



BUCKLING OF STRUCTURES

- -0 0 0
Oxx Oxy Oxz
0 0
Oyy Oyz
0
c;XX
0 0 0
Oxx Oxy Oxz
o= oyy 09z
0
GZZ
0 0 0
Oxx Oxy Oxz
0 0
Oyy Oyx
[ sym 09,

Equation 4-5¢

The superscript ° on the stresses denotes a distribution calculated from linear elasticity theory.
The coefficient A is the proportionality factor by which the calculated linear stress state must be
multiplied for buckling to occur. The initial stress state may be the superposition of stress
distributions with different proportionality factors, i.e.,

Equation 4-6

in which case the variational principle becomes

P
1
6Eﬂf (sTCe + Z AiAT61A> dv=0
v i=1

Equation 4-7

The variational principle may be specialized for various types of structures and load conditions.

4.3.1.Inplane Buckling for Plane Stress, Plane Strain,
Axisymmetric Stress States

For a body in a state of plane stress or plane strain which is subject only to inplane buckling,

while uy and uy, are functions of x and y only. Then for a orthotropic material

o1 _ [Ouxduy Buy  Ouy
0x dy dy  0x

Equation 4-8a
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Ci1 Gz Cis
C= Céz C§3
sym C33

Equation 4-8b

AT {aux duy duy E)uy}

0x dy 0x 0y

Equation 4-8¢

ogx Og 0 0
0
oyy 0 0

al
I

0 0
Oxx Oxy
sym oYy

Equation 4-8d
1
g = E,U (eTCe +2ATGA) da
a

Equation 4-9

where the integration is over the area of the body.

For an axisymmetric body with an initial axisymmetric stress state and which buckles
axisymmetrically, the function 1tB is of the same form as given in Eq. (4.9). However, the
matrices in that expression are now defined by

o7 = Qe 0 O
“lor 0z r 9z or
Equation 4-10a

’ i l l
Cll C12 C13 C14-

| oo oo
C33 C3y
sym Cha

Equation 4-10b

Oor 0z Or 0z r

AT {aur du, du, du, ur}

Equation 4-10c¢
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Orr Orz
0
Ozz
= _ 0 0
o= Oyr Orz
0
Ozz
0
Ssym G(D 1)

Equation 4-10d

4.3.2.Straight Beams

For buckling of straight beams with shear deformations included, the usual assumptions of beam
theory are made. Then, with x, y, and z denoting the centroidal longitudinal axis and the
centroidal principle axes, respectively,

=03 e[ G+ (5 + (|

Equation 4-11

where the strain energy U is given by Eqgs. (2.1 2) and (2.14) and P is the axial load calculated
from a linear analysis and assumed positive in compression. With this formulation, the beam
element may have an arbitrary orientation in space when the proper axis rotations are made. The
form of the variational equation implies that interpolation functions chosen for displacements
and rotations need only satisfy C° continuity at element edges.

For overall buckling of trusses, the members are assumed to change orientation but to remain
straight. Then Ty may be written as

o= e -2 () ) o

Equation 4-12

2
In all functionals, the term P (%) may be deleted since

P =201
EA E

Equation 4-13
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4.3.3.Flat Plates

Assumptions similar to those for linear analysis of flat plates are made for buckling of flat plates.
Then the functional g may be written for an isotropic plate as

1w dun[Ne Nl | 2z

g L9200 [N Nago] ) 5
“B“”zf{ax ay}[nyo Nyo] FIT

ady

Equation 4-14

where U is the strain energy given by Eqgs. (2.19) to (2.22) and Ny, Nyo, Nyyoare inplane stress
resultants in the plate prior to buckling. If shearing deformations are neglected for thin plates, the

strain energy function is replaced by Egs. (2.19), (2.25), and (2.26). In the former formulation
COcontinuity is required whereas in the latter C1continuity is needed.

4.4. Calculation of Eigenvalues

The lowest buckling load is generally the only one of interest so that use of the inverse iteration
method is indicated. Any of the other eigenvalue extraction methods can be used, however.

—i
76 =it DASSAULT

The EVDERIEMNCE ¢
A‘)—j SUSTEMES IDEXPERIEMCE ¢



HEAT TRANSFER

Chapter 5. Heat Transfer
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HEAT TRANSFER

5.1. Equations of Heat Transfer!'’!

Let gy, qy, and g, be the heat flux in a body in the x, y; and z directions and @ the internally
generated heat flow. Then the heat balance equation is given by

dqx 0qy dq, . aT
Jox dy 0z pat

Equation 5-1
where 7'is temperature, cis specific heat, and p is mass density.

The Fourier heat conduction equation relates heat flux and temperature for a thermally
orthotropic body with axes of orthotropy coinciding with the coordinate axes as

aT
dxr = _kxlﬁ
Equation 5-2a

o1
qyr = —Ky, ay'
Equation 5-2b

oT
zr = _ky@
Equation 5-2¢

with Ky,, Ky,, and k;, the thermal conductivities in the principal thermal orthotrophy directions.
These equations can be expressed in matrix form as

x T
{qy'f = —[k']{==
qz/

Equation 5-3
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with
ky 0 O
K]1=[0 k, 0
0 0 ky

Equation 5-4

The three components of heat conduction can be considered to be components of the heat flux
vector g. Similarly the three derivatives of 7 are the three components of the temperature
gradient vector. Under a rotation of the coordinate system, then, the Fourier heat conduction
relations become

oT
dx g%
Ayt = —[k]{ =—
oT
0z

Equation 5-5

where
kxx kXy kxz
k] = kyy Ky | = NT[K'IN
Ssym Kz

Equation 5-6

with N the rotation matrix given by Eq. (1.8). When the coordinate axis rotation consists of a
clockwise rotation through an angle 8 about the z-axis, the rotation matrix becomes

N=|—sin® cos® 0

0 0 1

cos® sin6 0]

Equation 5-7

and
Ky, €052 0 + Ky, sin? 0 (kg —ky,) sinBcos® 0
k] = Ky, sin? 6 + ky, cos?6 0
sym k,,
Equation 5-8
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The heat balance equation may now be written as

oT
x
90 0 oT oT
{&a—ya}“‘] ay (TP
oT
9z
Equation 5-9

When cylindrical coordinates r;, ¢, and z are used, as for a body of revolution, the heat balance
equation is readily derived as

0T
Jar
{6 10 O}k 10T 0T

Too tQ=cp5

oT
0z

Orryg 0z

Equation 5-10

The material is usually assumed to be thermally orthotropic with one axis of orthotropic
coinciding with the circumferential @ direction. Then [k] is of the form of Eq. (5.8) with ky, and
ky, replaced by the equivalent conductivities in the r-z plane while k,, is replaced by the
conductivity k.

Boundary conditions that may be imposed are the following:
(a) temperature 7*may be prescribed on portion St of the boundary §

(b) heat flux g* may be prescribed on portion St of the boundary S. Since heat flow occurs
normal to the boundary, the prescribed heat flux is given by

T
dx
d.n = gqxhy + qyNy + qzN; = _{nxnynz}[k] a_y =q
aT
0z
Equation 5-11a
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with 1 the vector normal to the surface Sq and ny, ny, and n, its components. If the surface is
insulated

q =0
Equation 5-11b
(c) convective heat transfer conditions may be prescribed on portion S¢ of S. Then
.0 =h(T - Ty)
Equation 5-12
with h the convective heat transfer or film coefficient and T, the fluid temperature.

In addition, the temperature distribution within the body must be prescribed at time ¢=0.

5.2. Variational Statement and the Finite element
Method

An equivalent variational principle valid at every instant of time may be written as
ST[T =0
Equation 5-13

where

aT/ T 5T/
d 9
L)or ’ oT * oT *
" fﬂ 2 foy( K147 oy —QT - peT 5 | dxdydz +f q"TdS
v aT oT Sq
/BZ /az

1
+ j h (—T2 — TTOO> ds
S 2
C
Equation 5-14
and dS'is an element of area on the surface .S, In this formulation

6T/ gt 1s not subject to variation.

The body is now divided into elemental subregions and the temperature field within the element
is represented by

T = {DHTy}

Equation 5-15

<
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where [D] is a row vector of interpolation or shape functions which depend on the position in the
element and {T,}is a column vector of nodal temperatures and possible derivatives of the
temperatures. The shape function need only satisfy Ccontinuity, i.e., only the function itself
need be continuous at element boundaries.

Then
aT
ox
oT
o[ [BI{Tn}
aT
0z
Equation 5-16
with
dD
ox
dD
[B] = 3y
dD
0z

Equation 5-17

The portion of Tt contributed by each element is then given by

sy = {T,)" E (Dkr] + D) (T3 = {ro) + {rg} = (o1 {52} - {rm}}

Equation 5-18

with

kel = [[[ eI 1B1av
AV

Equation 5-19a

bl = || n[o17D1s

AS

Equation 5-19b
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{ro} = fff Q[D]T dv

Equation 5-19¢
{rq } = ff q* [D]TdS
ASq

Equation 5-19d

[er = [[f petor”

Equation 5-19¢

{ro} = ff hT,, [D]T dS

AS,
Equation 5-19f

Here AV is the volume of the element,AS, is that portion of the boundary S. which is a boundary
of the element, and AS, is that portion of the boundary S, which is a boundary of the element.
For interior elements these are equal to zero. On the remaining portions of the boundary Sr, the
temperature at nodal points is given by T

Assembly of the variational functional [1 yields an expression of the form

o = 00" 5l i DO = () + (v + e 13- )

Equation 5-20

Where {T} is the matrix of nodal temperatures arranged sequentially and the remaining matrices
are the assembled versions of those defined by Egs. (5.19). Minimization with respect to the
nodal quantities then yields the set of equations

[ox 1[5] + iem = )

Equation 5-21
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with

[K] = [Ke ] + [Hr ] (R} = {Ro} + {Roo} — {Rq }
Equation 5-22

Those equations of the above set which represent minimization with respect to nodal
temperatures on St should be deleted. In the remaining equations those terms of dT/dt referring
to temperatures on St vanish while the corresponding terms in T are set equal to the prescribed
temperature. This approach can be applied easily if the prescribed temperature is zero since the
node at which that temperature is prescribed need not be included in the numbering system. For a
non-zero prescribed nodal temperature T, another approach is to add a large value of
conductivity K, to the corresponding diagonal coefficient of [K] and to replace the
corresponding coefficient in {R} by K.T, - This method effectively forces the nodal
temperature to be equal to the prescribed value for sufficiently large K,.
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5.3. Solution of Transient Heat Conduction!"!

The analysis of steady-state heat conduction problems involves the solution of a set of
simultaneous equations given by Egs. (5.21) with each term of dT/dt set equal to zero and with
Q and q* assumed to be independent of time. This may be accomplished, as for static stress -
analysis, by Gaussian elimination. The analysis of transient heat conduction, however, involves
the solution of Egs. (5.21) as a set of simultaneous first order linear differential equations in time
subject to certain initial conditions.

These equations may be solved by mode superposition, as for dynamic stress problems, by
determining the eigenvalues and eigenvectors of the equation

[K—=2Cr J{T} = {0}
Equation 5-23

A more usual approach is to numerically integrate the differential equations. One such method
uses the assumption that temperatures at time t and t+At are related by
oT oT
(Thoae = (T + {(1 B 5 * B{E}HM}

Equation 5-24

By writing Egs. (5.21) for time t and t+At, the derivatives of temperature can be eliminated and a
set of equations for temperature at time t+At can be obtained as

([0 1+ BIKT) (D = (g0 ]+ (= BIK) (D, + (1~ BRY +BReae

Equation 5-25

Thus the problem is reduced to the repeated solution of a set of simultaneous equations. For
constant .0.t the matrix on the left side of the equation is independent of time and need be
reduced by Gaussian elimination only once. With given initial values of {T} at t=0 and with
{R}=o at {R}=ar known, the set of equations may be solved for {T}a.. The right side is then
changed using the new values of {T}x; and the values of {R}x and {R}x; and the solution
obtained for {T}x; and so on.

In the program (3 is taken as 1, in which case the method is known as the Euler method. The
method is unconditionally stable if At is less than 2/Ap.x. Where Anay is the largest eigenvalue of
Eq. (5.23).
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Chapter 6. The Element Library
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A number of elements for different uses are available in the program. These are discussed

below.

6.1.

TRUSS3D: Linear 3-D Truss/Spar

Y

»
z g
FIGURE 15
Matrix Variational Function Shape Function Integration
Geometric 1 AL U 2 duy> duz\* _ 1— R n X Exact, no
Stiffness > fo P (a—xx) + (g) + (E) dx Ux = Uxa ( AL) Hx (AL integration
[k’ ] points
G X X
P, constant Uy = Uy (1 - E) + Uy (E)
X X
_ Uy = Uzq (1 - A_XL) + Uz, (A_)}‘)
Mass 1 _2 & Exact, no
[m'] N f PA(uf +uj + uf)dx ux = e (1 AL) e (AL) integration
0 < < points
p, A constant Uy = Uy (1 - E) + uy; (E)
X X
_ Uy = Uyzq (1 - A_XL) + Uz (A_)}‘)
Gravitational _ -~ Exact, no
Loading f PA(gxUx + gyuy + g;u,)dx x = tha (1 AL) iz (AL) integration
P, 0 points
X X
p, A, gx, gy, gz constant Uy = Uy; (1 - E) + Uy, (E)
X X
Uz = Uz, (1 _E) + uz; (E)
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Transformed Linear Stiffness Matrix:

kB = TTk’BT
with
AX AY AZ
AL AL AL
0 0 0 0 0 0
7[00 0 0o 0 0o o
0 0 0 AX AY AZ
AL AL AL
0 0 0 0 0 0
L0 0 0 0 0 0
and
AX = XZ - X]_
AY = Y2 - Y1
AZ = ZZ - Zl
AL = \/AX2 + AY? + AZ?
Stress:
Uy — Uyq
oy =E ( AL (xAT)
(uXﬂ
Uy
AX AY AZ AX AY Z |u,
oy =E| —"— 5 ———=— ——1 > — AT
ALZ  ALZ2  AL2AL? ALZ ALZ Uy,
Uy,
\U,,/
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Transformed Thermal Loading:

r AX

AL
AY

AL
AZ

AL
AX

AL
AY

AL
AZ

Pr

5
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6.2. BEAM3D:Linear 3-D Elastic Beam

FIGURE 16

For symmetric beams the x axis coincides with the beam centroidal axis and the y and z axes are
principal centroidal axes. Node 3 lies in the principal x-y plane. For unsymmetric beams with
offset, the orientation of the element x, y, and z axes is determined by the location of two offset
nodes and a third node. The location of the element end nodal points with respect to the member
end centroids is given in terms of member centroidal coordinate axes x', y', and z' defined such
that the x' axis coincides with the member centroidal axis, the z' axis lies in the element x-z plane
and is perpendicular to the x' axis, while the y' axis is perpendicular to both the x' and z' axes, the
three forming a right-handed Cartesian coordinate system. Shear factors, however, are those for
the member principal axes. Stiffness matrices are first calculated for member principal axes and
are then transformed to account for the orientation of the various coordinate axes with respect to
principal axes and for the offsets of the nodes from the centroids of the element end cross-
sections. If Iy, I,», and Iy, are, respectively, the moments of inertia of the cross-section about
the y' and z' centroidal axes and the centroidal product of inertia, the principal moments of inertia
are given by

1 1
I 3 (14 cos 20) 5 (1 —cos260) —sin 20 Lyrys
f=[2 1 o
z 3 (1 — cos 20) > (1 + cos 20) sin 20 Ly1z
90 P4
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where

—90° <26

21y
=tan~! Y2 <90°

Izlz/ - Iy/y/

Matrix

Variational Function

Shape Functions

Integration

Linear
Stiffness

[kz]

Eq. (2.14) for principal axes
E,Gv,ATL,TT kyk

VA

Uy = Uxq (1 _&) + Uy (&)
w = 1 X 2

gl a2 [0
X

_E)uyl
X X 1
+E(1 _E) (1 +E¢y

X
- E) ¥, AL

+ (ﬁ) [cfy+ 3&
X
—Z(E) ]uyz

X X 1
-5 (-1 (3o

lpy=1+¢Z[(1—ﬁ)(1+¢z—3ﬁ)wyl
s
o ea @) C)
llJz=T¢Z[(1—E)(1+<py—3E)l{JZ1
~ () (2= 9y =35 %

-oar(t-30) )

Exact, no
integration
points

—5
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241+ V)T, 241+ V)],
v kyAL? ‘ k,AL?
(X, y, z principal axes)
Geometric | 1 (AL ou\?  /oun? X Exact, no
Stiffness Ef P [(a_xy) + (Oxz) dx (1 a E) [(1 +2 AL) Uy + AL ‘leAL] intggration
k] 0 + (i)z [(3 _ 2_) ", points
AL AL/ Y
X
-(1-5) ZZAL]
X
.=(1- E) [(1+2 A7) W ylAL]
2
+(g) (- )uZz
-(1- i) ¥, AL]
AL
P, constant (Shear Deformation Neglected)
Mass 1 (AL _(+_ % X Exact, no
[m] E,fo pA {ux uy u, Py ¥y lpz} U = (1 AL) Uyt F (AL) Uz integration
(1 00 0 0 O uy, = same as for [kg] points
0100 0 0 u, = same as for [kg]
0010 0 ?2|(% Lp=(1——)l}' +(X)l{J
T uy X AXL X1 %L X2
0 00 = 0 0f]u =(1-2)(1-3=
A g, [ dx v =(1 AL) (1 3XAL) Fr .
I Y -3
0000 = pf|% (30) (2=330) %
- | e _1(1 _X (@)
0 00 0 0 Ly YA YRANRYY}
Al X X
Lo=T,+1, = (1-5) (1- 3}(5) Y1
p, AT, T, T, constant - (E) (2 3 AL) ¥,
X y1
(1= (2=
AL( AL) ( AL )
(Shear Deformation Neglected)
Pressure AL uy, u, same as those for [k¢]
Loading J; (pyuy + p,u,) dx
Thermal AL duy _ AT, 0¥, |us W, ¥, same as for [k¢]
Loading f Sl B
pPr =
COT 0% AT, = AT, (1- AL) + AT, — n
Y b 0Ox
AT, and AT, = constant
temperature differences in the y
and z directions, respectively
=5
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Stiffness and Mass Matrix Transformation

Matrix referred to Global Coordinates = (T; T, T3 T4)" (Matrix referred to principal axes) (T,
T> T3 Ts)

The matrix T is the transformation matrix from principal to member axes:

R

T1(1zx12) =

0
R
0
0

T o oo

0
0
R
0

o O O

1 0 0
Rix3) = |0 cosO®  sin®
0 —sinB® cosH
with 0 as defined previously. If the symmetric beam option is used, T is set equal to the identity

matrix I. Matrix T, is the transformation matrix for translation from element ends to offset nodes
in member coordinates:

S 0
T2(12x1z) o Sz]

100 O0 -DZ DY
0 1 0 DZ 0 —DX
s —l0oo0o 1 -py Dxp 0
e 10 0 0 1 0 0
000 O 1 0
000 O 0 1

For the symmetric beam option, T, is taken as I.

Matrix Tj3 is the transformation matrix for rotation from member axes to element axes.

Ryx 0 0 0
0 Ryy O O
0 0 Ryy O
0 0 0 Ry

T3=

Where the rotation matrix Ry, can be determined from Figure 17 as

[ L Ay, LaA,T
Ly Lp LyLp
Ay Lp  Aydy,

R, =|--X =2
. Ly Lg LnLp
ﬁ 0 L_B
[ Ly Ly
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Node

z Z (in x-z plane)

FIGURE 17
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where
Ax’ = DX2 — DX1
Ay’ = DY2 — DY1
Az' = D72 — DZ1

LA = LCG - AX’

Lg = \/Li\ +y'? = \/L%\, — (Az)?
For the symmetric beam option, Ts is set equal to I.

The matrix Ty is the transformation matrix from element to global coordinates.

R 0 0 0
T _|{0 R 0 O
4(12x12) 0 0 R O
0 0 0 R
where
ngX ngY nyZ
R(3x3) = nyX nyY nyZ
n,X n,Y n,Z
When the third point is used
X, — Xy Y, —-Y; 7, — 74
Mot = TR ST =gy
nooNax o Ny Ny
zX Nz i zY Nz ) YA/A Nz
with
Nux = (Zs - Zl)(YZ - Yl) - (Y3 - Y1)(Z2 - Zl)
Ny = (Xs - X)(Zy—71) - (Zs —Z)(X; —Xq)
N,z = (Ys -YDX; —Xy) — (X3 -X)Y,—Yy)
N, = N3+ Ny + N2,
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Nyx = NzyNyz — Nzz0xy
Nyy = Nzzlgx — NzxNy7
n

yz = NzxNygy — NzyNxx

Here Xj, Yi, Z; are the global coordinates of the three nodes. The matrix is used for both
symmetric and unsymmetrical beams.

Force Matrix Transformation:
f=(Ty T, T3 T,)TF
Stress Calculation:

The stress is best determined in terms of forces at the member ends. These are given for
principal axis coordinates as

¢ AAT,
0
PXl uxl 0
Py Uy : 0
P, Uz y
My, Wi FATZ
My Wyq I
M, v, — ATy
I0A e (T, T T A b4 Eed B 7Y
Py BLT1 7273 47 Uy, —AAT,
Py2 Uy 0
Py2 uZZ 0
My, $x2 0
My v _bap
\M,, P22 i
I
| TATy
The axial stress is then determined as
P M, M, ,;iZ
Oy = (_1)1ﬂ_ z iy + yi
A, I,

To obtain the torsional stress, the twisting moments must be referred to the shear center
for an unsymmetrical section. The end forces given above are then premultiplied by the
transformation matrix.
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Sec 0
Ts 0 Ssc]
with
1 O 0 00 0
0 1 0 000
| o O 1 00 0
Ssc=| o0 DZS, DYS, 1 0 0
DZS. 0 0 0 1 0
DYS, O 0 0 0 1

i.e., the forces referred to the shear center are given by

Pshear center = TsPend

For the symmetric beam option Ts is set equal to I, but this is valid only for doubly symmetrical
beams.

The torsional stress is then

_ (My)(CTOR)

max —
J

Tapered Symmetrical Beams:

For a tapered doubly symmetrical beam, all matrices are calculated as for a doubly
symmetrical uniform beam with the following equivalent properties:

1
A= §(A1 +JAA; +A)
Tt i + Jiale+ N
—_ 1 —_ 4 _3_ _ _ 4 |— _3 -
I, = g Ipn+ [l + Ll + [Tl + 15
1 N N
] = T o+ [Ji)e + e+ 1z + )2

For stress calculations, the actual stiffness at ends 1 and 2 are used.
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6.3. RBAR: 2-Node Rigid Bar'*"!

FIGURE 18

Nodes 1 and 2 are connected by a rigid bar and are constrained to have rigid body relative
displacements and the same rotation. The constraints in vector form are

51 =§2
and
— — 1 = = - -
Uy — Uy = 5(91 + 92) X (f; —Tq)

where 0 is the rotation vector, U the displacement vector, and T the radius vector. These
constitute a set of six equations which are imposed via the penalty function method. The term

1S RN
R= EZ Ei(82 — 04))% + F; |up; —uy; — EZ Z €ijk (025 + 1)) Kok — X11)?
i=1 '

is used as a variational function. The resulting stiffness matrix is included in the structural
stiffness matrix. The quantities E; and F; are large numbers of the order of 1E 10. The single
subscripts 1, j , k indicate the components of the various vectors and Eijk is the permutation
symbol which is equal to zero if two or more of the subscripts are equal, and

€123 = €231 = €312 = T1, €321 = €213 = €132 = —1
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6.4. SPRING: Spring Element

k :
torsional

FIGURE 19

The element allows input of concentrated axial loads in the direction of the element axis and
concentrated moments about the element axis which are proportional to the relative
displacements of the nodes.

Matrix Variational Function Shape Integration
Functions
Linear Kaxial 0 —Koxial 0 Uy, None None
Stiffness 1 0 ktorsional 0 _ktorsional l{Jxl
[k'B] E{U)d LPXI ez prz} _kaxial 0 kaxial 0 Ux2
0 —Kaxial 0 Ktorsional o
s 99
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6.5. SHELL3T: Triangular Thick Shell?®*?>%!

Material is isotropic.

FIGURE 20

Matrix Variational Function Shop Functions Integration
Linear Egs. (2.19) to (2.21) Uy = Uy Lq + ULy + uysls Exact for
Stiffness 1 inplane
[k’B18x18] + 2Y3 L3[L; (Wes energy;
-¥,,) numerical
— L, (¥, — ¥5)] with one
integration
Uy = UyqLy +ug, Ly +uysls point for
1 bending
+5 [x3L1 Ly (Wyy energy
- lIJzZ)
+ (X2 — X3)Ly L3 (W3
- q”zz)
= XaLy Ly (Wpz — Wp1)]
Uz = Uy Ly +uzpLls +ugsls™
l{Jx = l'I']xll-'l + quZLZ + lpx3 I-'3
VY =W, L + Wy,L, + Wy3ls
* This is nominally the assumed
displacement function. Derivation is
100 P4
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modified by dividing displacements into
bending and shear components and
deleting bending portions of shear
displacements.

(L4, Ly, L; area coordinates for triangle.)

Geometric au (?u U, = Uy Ly +u,L, +u,3Ls Numerical, 1
Stiffness f f 5 z 5 z Gauss point
[k'G] Area X y
du,
Ny Nyl )ox
[ny N, | ou, dx dy
dy
Mass 1 Same as for Linear Stiffness Numerical, 1
[m'] 5 J’ f p{ux uy u, ¥, lpy} Gauss point
Area
ph 0 0 0 0
0 ph 0 0 0 Uy
0 0 ph © 0 uy
o o0 o0 1 b3 0 Uz » dx dy
12° $
0 0 0 0 %phg §
Heat Transfer T=TL; + T,L, + T3L3 Numerical
[k't] f f gT ZT 1 point
Area X y
0T
kxx kxy:| a
dx dy
[kxy kyy 6_T
ay
h f f T or dxd
Area
[c'r] h f QT dx dy 3 points
Area
{ro} 1 point
Pressure Same as for Linear Stiffness 1 point
Loading ﬂ p u, dx dy
Area
Thermal P} P Same as for Linear Stiffness 1 point
Loading -U Ea [( Ux + &) AT
ox 0 AT = AT, L, + AT,L, + ATsL,
h® (oW, a‘P
2 5 6y AT, | dx dy AT, constant
Gravitational Same as for Linear Stiffness 1 point
Loading J’f (gxuX + gyuy, + gzuz) h dx dy p
Z 101
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Transformation Matrix for Stiffness and Mass

k=TTK'T
where
R 00 0 0 O
0RO O OO
T /0 0 R 0O 0 O
18x18) ~fp 0 0 R 0 0
0 0 00RO
0 000 0 R
R is same as rotation matrix R used in BEAM3D
Load Transformation
f=TTf
No transformation matrix for heat transfer
=
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6.6.

SHELL3: Triangular Thin Shell

FIGURE 21

Material is isotropic.

Matrix

Variational Function Shape Functions Integration
Linear Uy, Uy same as for SHELL3T 1 point
Stiffness 1 J j {% % % %} integration
2 e Ox dy dy  0x u, is unspecified in interior along sides
s\? s s duy;
Ouy uz=(1——) [(1+2—)uzi+——z‘
K —vK 0 dy l 1 | os
—vK K 0 du 5\* s
1-v |1 5% (& #(p) |E-2p)w
0 0 —K Ox
2 duy  duy S auz]’]
+=2 +1—-
dy  0Ox | ds
+l J’f {6& 0%y % — al{”‘} i=end 1, j=end 2, | = length of a side,
2 ox dy dy ox s = distance along side from node I to
Area .
node j
oy,
D —vD 0 aqff
—vD D 0 X
. . 1—v 5 3y dx dy
2 oY, Ja¥,
dy X
5
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P P
vyl _ _ y1
{‘Pz} =L,2L, — 1 (%1 +L,2L,

S

with Wy, W;; (i=4, 5, 6) the rotations at
the side midpoints. These are
eliminated by imposing the Kirchoff
conditions

auz+lp =0
0x vy
au2+lp =0
dy X

at the corners of the triangles, the
conditions

at the triangle midsides, with W the
rotation component in the direction of
the side, and by imposing a linear
variation of the normal rotation
component along the sides, i.e., at the
side midpoints

1
Y = > (Woi + W)

Geometric Same Shape Functions as for Linear Exact
. 1 du OJu Ju Ju .
Stiffness — {_ —_— Yy, l.].!n} Stiffness
2 Ox dy dJdy 0x
Area
duy
NG Ny, 0 0 0 0 aalfy
Ny 0 0 0 0|y
N N 0 0
e )éy % dx dy
Ny, 0 0] ay
N)(gx N)(Zy auy
N© ax
yy
_pr
¥,
All other variational functions are identical Same Shape Functions as for Linear Exact, no
with those for SHELL3T Stiffness integration
points
104 4
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Transformation Matrix

Coococow
cocoocowo
cooxmoo
cComo OO
owoocoo
oo oo

R is identical with 3™ node transformation for BEAM3D.
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NOTATION TABLE

Notation Table

A area of a cross-section of a beam

A thermal expansion coefficient matrices (Eq. 1.37)

A beam thermal expansion matrix

B; matrix of strain function of position within the i™ finite element

CC symmetric elastic coefficient matrices defining stress in terms of strain, referred to
different coordinate systems (Eq. 1.36, 1.40a)

C; elastic constant matrix for i finite element

Cior coefficient for maximum shear stress of a section in torsion

C beam elastic stiffness matrix

C flat plate elastic stiffness matrix

C elastic coefficient matrix for a conical shell

c specific heat

[« shifting parameter for frequency

D isotropic plate bending stiffness

D; matrix of displacement functions of position within the i™ finite element

Dy, Do meridional and circumferential bending stiffnesses for an orthotropic conical
shell

E, E' square symmetric strain matrix of nine strain components at a point referred to
different coordinate systems (Eqs 1.23, 1.26)

E Young’s modulus of isotropic material

§ strain matrix for the i finite element

E; Young’s modulus of orthotropic material with coincident material and coordinate
axes relating direct strain in I direction due to direct stress in i direction

Es, Eo Young’s modulus in shell meridional and circumferential directions

e beam strain matrix (Eq. 2.12b)
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m

flat plate strain matrix (Eq. 2.20)

e strain matrix for a conical shell

F, F' symmetric elastic coefficient matrices defining strain in terms of stress, referred to
different coordinate systems (Egs. 1.39, 1.40b)

F assembled body force matrix

F; body force matrix for i™ finite element

fi components of body force vector at a point acting in 1 direction

G shear modulus of isotropic material (G =3 (1E+V))

Gij shear modulus of orthotropic material with coincident material at coordinate axes
giving shearing strain between lines in the I and j directions due to shearing stress
component oj;

h plate shell thickness; convective heat transfer or film coefficient

I beam moment of inertia about an axis normal to plane of bending

Iyy, 1,2, Iy, beam cross-sectional moments and product of inertia

I, L, I3 stress invariants at a point (Eq. 1.20)

Ty, I, principal moments of inertia

J beam cross-sectional torsion constant; Jacobian

J1,J2, )3 strain invariants (Eq. 1.34)

K assembled stiffness matrix

K isotropic plate stretching stiffness K = ihz

Ks structural stiffness matrix

Kg geometric stiffness matrix

Ks, Ky meridional and circumferential stretching stiffnesses for an orthotropic conical shell

k thermal conductivity matrix

k; stiffness matrix for the i finite element
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ky, ky, k,  thermal conductivities in Cartesian coordinate directions

Ey, K, shear strain energy correction coefficients for non-uniform distribution of shearing
stress

M assembled mass matrix

M; matrix relating nodal variables of ith element to the assembled matrix of all nodal
variables

N rotation matrix (square matrix of cosines of angles between coordinate axes in x and
x' coordinate systems

n outwardly directed normal to a plane passing through a point

nj outwardly directed normal to principal plane i at a point

Py transformation matrix used in Jacobi method (Eq. 3.19)

Py, Vy, V, force components acting on a beam ends (Fig. 11)

p beam end force and moment matrix (Eq. 2.12a)

Q internally generated heat flux

q nodal variable matrix

qi matrix of nodal variables for i finite element

Ox dy» 9. body heat flux in Cartesian coordinate directions

r,d,z coordinates of cylindrical coordinate system

S,S' square symmetric stress matrices of nine components of stress vectors acting on
different sets of three perpendicular planes about a point

Soi square symmetric matrices of nine components of stress vectors acting on
different sets of three perpendicular planes about a point

s, n axes of conical orthotropy (Fig. 10)

s, 0,z meridional, circumferential, and normal coordinates for a conical shell

T temperature

T, My, M; moment components acting on beam ends (Fig. 11)

Tk kth transformation matrix for subspace iteration (Eq. 3.27a)
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Th nodal temperature matrix for finite element

Te transformation matrix relating strain matrices € and €'

Ts transformation matrix relating stress matrices o and ¢' (Eq. 1.14)

Tw fluid temperature

t time

tn stress vector on a plane passing through a point and having the normal vector n

U strain energy (Eq. 2.5)

u, v, w flat plate reference plane displacements

u(s), w(s) axisymmetric meridional and normal reference surface displacements for a conical
shell

u; displacement matrix for i finite element of deformable body

Ug, Ug, U, conical shell displacements in direction of coordinate axes

Uy, Uy, U, deformation components in the direction of the Cartesian coordinate axes

Uxo axial displacement of centroidal axes of an initially straight beam

Uy, Uy, U, displacements of reference surface of plate or shell

\Y volume of deformable body; kinetic energy (Eq. 3.3)

Vi volume of the i finite element

Vi transformed eigenvector matrix for k™ round of subspace iteration (Eq. 3.27¢)

Wi numerical integration weighting constant for sampling point 1 in region

W warping of beam cross-section

X, X' matrices of Cartesian coordinates of a point in space referred to different coordinate
axes

X,Y,Z coordinates of Cartesian coordinate system

o thermal expansion coefficients for isotropic material

o,y terms in i™ and jth rows and columns of Py

i thermal expansion coefficients for direct (i = j) and shearing (i # j) strains
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Ao displacement gradient matrix

AT difference between actual temperature at a point and uniform temperature at which
body is stress-free

Jij Kronecker delta (=1 ifi=j,=0if i #))
column strain matrix of six independent components of E, E' (Eq. 1.27. 1.29)

€8 strain matrix for conical shells used in the determination of the geometric
stiffness matrix

€ principal strains

€ij measure of change of length of a line originally in the i direction if i=j, a measure
of the change of angle between two originally perpendicular lines in the i and j
directions if i#j

linear strain matrix for conical shells

™M

0 angle between coordinate systems having a common axis (Fig. 5); angle between
radial axis and s axis of conical orthotropy in a body of revolution (Fig. 10)

A diagonal matrix of eigenvalues

A initial stress distribution proportionality factor

Ak diagonal eigenvalue matrix for k™ round of subspace iteration (Eq. 3.27d)

\% Poisson’s ratio of isotropic material

Vij Poisson’s ratio; ratio of strain in the i direction and strain in the j direction, due to

stress in the j direction

Vsdb Poisson’s ratio for orthotropic material

&n non-dimensional coordinates of a point in a regular element

I1 potential energy of elastic deformable body (Eq. 2.5)

Iy potential energy for buckling problems

IT; potential energy of i finite element

p mass of body per unit volume

c, G column stress matrix of six independent components of stress matrices S,S'
110 P4
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NOTATION TABLE

stress matrix i finite element

Gj

Gi principal stresses at a point

Gij stress component in j direction of stress vector acting on plane perpendicular to the I
direction

oM von Mises stress (Eq. 1.21a)

(3] initial stress distribution matrix for buckling problems

Toct shear stress on a plane making equal angles with respect to the principal axes

o matrix of eigenvectors arranged by columns

o eigenvector matrix for k™ round of subspace iteration (Eq. 3.27¢)

Y.,Wy,¥, small rotation components in the direction of the Cartesian coordinate axes

W vibration frequency

X1 L . .

Xz} = represents combination of two equations where each equation is defined by the
corresponding terms on the same level after the bracket symbol

7 111

L/D SUSTEMES



REFERENCES

References

1. Timoshenko, S ., and Goodier, J. W.: Theory of Elasticity, 3rd Ed., McGraw-Hill Book Co.,
Inc., 1969.

2. Timoshenko, S., and Woinowsky-Krieger, S . : Theory of Plates and Shells, 2nd Ed.,
McGraw-Hill Book Co., Inc., 1959.

3. Timoshenko, S., and Gere, J. M.: Theory of Elastic Stability, 2nd Ed., McGraw-Hill Book Co.,
Inc., 196 1.

4. Runge, C.: Z . Math. u . Physik, vol. 50, p . 225, 1908.

5. Ritz, W.: libeer einer neue Methode zur Losung gewisser Variations probleme de
mathematischer Physik, j .f.d. reine u. angew. Math. (Crelle), vol. 1 35, pp. 1 -6 1, 1909.

6. McCormac, J., and Elling, R.E.: Structural Analysis, Harper & Row, Publishers, 1 988.
7. Martin, H. C. , and Carey, G. F. : Introduction to Finite Element Analysis , Theory and
Application, McGraw-Hill Book Co., 1973.

8. Courant, R.: "Variational Methods for the Solution of Problems of Equilibrium and
Vibrations", Bulletin of the Am. Math. Soc., vol. 49, pp. 1-23, 1943.

9. Lekhnitskii, S. G.: Theory of Elasticity of an Anisotropic Body, Mir Publishers, Moscow,
1981.

10. Washizu, K . : Variational Methods in Elasticity and Plasticity, 2nd Ed., Pergamon Press,
1975.

11. Cook, R. D.: Concepts and Applications of Finite Element Analysis, Second Edition, John
Wiley & Sons, 198 1 .

12. Zienkiewicz, 0 . C . : The Finite Element Method, 3rd Ed., McGraw-Hill Book Co. (UK)
Ltd., 1977.

13. Bathe, K. J., and Wilson, E. L.: Numerical Methods in Finite Element Analysis, Prentice-
Hall, Inc., 197 6.

14. Weingarten, V. 1., Ramanathan, R. K., and Chen, C. N.: Lanczos Eigenvalue Algorithm for
Large Structures on a Minicomputer, Computers & Structures, vol. 1 6, no. 1-4, pp. 253-257,
1983.

112 ,_7 )
c o DARSSAUILT The SDEXPERIENCE «
/{;}_ﬁ SUYSTEMES EXPERIEMNCE ¢



REFERENCES

15. Chowdhury, P. C.: The Truncated Lanczos Algorithm for Partial Solution of the Symmetric
Eigenproblem, Computers & Structures, vol. 6, pp. 439-446, 1976.

16. Hughes, T. J. R.: The Finite Element Method, Prentice-Hall, Inc., 1987.

17. Seide, P.: Small Elastic Deformations of Thin Shells, Noordhoff Int. Publishing, 1975.

18. Przemieniecki, J. S.: Theory of Matrix Structural Analysis, McGraw-Hill Book Co., 1 968.
19. Hall, A. S., and Woodland, R. W.: Frame Analysis, John Wiley & Sons, 1961.

20. Lashkari, M., Liang, T.: Unpublished work, Structural Research.

21. Peano, A.: Hierarchies of Conforming Finite Elements for Plane Elasticity and Plate
Bending, Comp. & Maths with Appls., vol. 2, pp. 2 1 1 -224, 1 976.

22. Szabo, B. A.: Some Recent Developments in Finite Element Analysis, Comp. & Maths with
Appls., vol. 5, pp. 99- 1 15, 1 979.

23. Babilska, I., Griebel, M., and Pitkaranta, J.: The Problem of Selecting the Shape Functions
for a p-Type Finite Element, Int. J. Num. Methods in Eng., vol. 28, pp. 1891 - 1908, 1989.

24. Allman, D. J.: A Compatible Triangular Element Including Vertex Rotations for Plane
Elasticity Analysis, Computers & Structures, vol. 19, no. 1-2, pp. 1-8, 1984.

25. Batoz, J. L., Bathe, K. J., and Ho, L. W.: A Study of Three-Node Triangular Plate Bending
Elements, Int. J. Num. Methods in Eng., vol. 15, pp. 1771-1812, 1980.

26. Belytschko, T., Stolarski, H., and Carpenter, N.: A co Triangular Plate Element with one
point Quadrature, Int. J. Num. Methods in Eng., vol. 20, pp. 787-802, 1984.

27. Cook, R. D. : On the Allman Triangle and a Related Quadrilateral Element, Computers &
Structures, vol. 22, no. 6, pp. 1065-1067, 1086.

28. Bathe, K. J., and Dvorkin, E. N. : A Four-Node Plate Bending Element Based on
Mindlin/Reissner Plate Theory and A Mixed Interpolation, Int. J. Num. Methods in Eng., vol. 21,
pp- 367-383, 1985.

29. Bathe, K. J., and Ho, L. W. : A Simple and Effective Element for Analysis of General Shell
Structures, Computers & Structures, vol. 13, pp. 673-681, 1981.

3 T 113
Tl ;TE-SIF;‘*JL] & T EDF‘:F_I?E:HLFE ;
L/D SUSTEMES e SDEAPERIENLE comy



INDEX

Index

plates ........cc.e......
potential energy
principal stress

stiffness matrix
StraiN...eeeeeeeennnn....

subspace iteration
TRUSS3D...........
vibration modes and frequencies
virtual work.........

ANISOLIOPIC....vvieriiieeiieeiie e e 21
BEAMS3D ..ot 90
beams ......ooooiiiiiiiiee 38,75
buckling.......coccvvevieeeiieeiiee e 71
Nplane........cccceveveiviieiiieeeeeeeeeeen 73
coordinate SYStem.........cccevveerveerreeeeueennne. 10
critical 10ads ......c.coevveevieeniieiieeee 71
e1genvalue .......occevevvveenieeieecieeee 64,76
CleMENt.....eeiieeie et 47
2-node rigid bar.........ccoocveveerierienienen. 98
1SOPATAMELTIC...ccuvereeiieeiieeiieciree e 54
linear 3D elastic beam............ccccccuenenn. 90
linear 3D truss/spar........cccceeevveeceveennne. 87
SPIINE..veeerieeiieeereeeeereeete e e eeiae e 99
triangular thick shell ...............c..c... 100
triangular thin shell ............c..cccooee. 103
equations of equilibrium ........................... 16
finite element method ............cccoeveeenennnne. 47
heat conduction .........ccccceevvveeiiieeneeenieenee. 85
heat fIuX ....ooevvveeiiee e 78
heat transfer..........ccoceeevveecieiiieeee e 78
Hooke's [aw......cccoeviieiiiieiieeieeee e 21
interpolation functions ...........cccoecveeeeennnee. 51
isoparametric element............cccceeueeeeennnee. 54
MASS MALTTX cevvveniveeriieenieeeeieeeiieeieeenee e 63
114

—i
Lo DASSAULT

g)_} SUSTEMES

The SDEXPERIENCE c



